47 PROVINCIA AUTONOMA DI TRENTO

DIPARTIMENTO INFRASTRUTTURE E TRASPORTI AGENZIA PROVINCIALE OPERE PUBBLICHE SERVIZIO OPERE STRADALI E FERROVIARIE

OGGETTO: OPERA S-1119

Lavori concernenti l'intervento di sistemazione e adeguamento delle fermate TPL in Val di Fiemme

CUP: C25F25000080003

FASE PROGETTO:	PROGETTO ESECUTIVO
CATEGORIA:	110 - RELAZIONI

TITOLO TAVOLA:

RELAZIONE DI CALCOLO

FASE PROGETTO:	TIPO ELAB. :	CATEGORIA:	PARTE D'OPERA :	N° PROGR.	REVISION	E SCALA:
E	R	110		15		-
REDAZIONE :			DATA REDAZIONE : Aprile 2025			
PROGETTAZIONE:		COORDINATORE SIC DI PROGETTAZIONE:	UREZZA IN FASE	Visto ! IL SOSTITUTO DIRETTORE DELL'UFFICIO INFRASTRUTTURE FERROVIARIE		
_{ing.} Marco Sc	ontacchi	Ing. Marco S	Sontacchi	ing. Nicola Simoni		
COLLABORATORE all	a PROGETTAZIONE:	RILIEVI TOPOGRAFIC	l:	Visto ! IL DIRIGENTE:		
Ing. Davide C	Coelli	Geom. geom For	rti saverio			
geom. Claudio I	Decarli	Geom. geom. Lu	igi Rattin	Dott. Ing.	Carlo Be	nigni
RELAZIONE GEOLOG	ICA				NTC.	NON
Dott. Riccardo	Campana			STRADAZ AND		*OLLING
NOME FILE :		PLOTTAGGIO :		N. P.A.T. :		COPIA N.

Indice generale

1 Descrizione del software	2
2 Normative di riferimento	2
3 Geometria del muro	3
3.1 Sistema di riferimento	3
3.2 Rappresentazione geometrica, sezione trasversale	3
3.3 Rappresentazione analitica	
4 Caratteristiche dei terreni	4
5 Geometria degli strati	4
6 Geometria dei carichi	4
6.1 Carichi uniformi	5
7 Metodi di calcolo delle azioni e delle verifiche	5
7.1 Descrizione della normativa sismica	
7.2 Descrizione del metodo di calcolo delle spinte	7
7.3 Descrizione del metodo di calcolo della portanza	8
8 Distribuzioni di spinte e pressioni	
8.1 Coefficienti di spinta	9
8.2 Pressioni	10
8.2.1 Pressioni sul paramento a monte in combinazione EQU-1	10
8.2.2 Pressioni sul paramento a monte in combinazione EQU-2	10
8.2.3 Pressioni sul paramento a monte in combinazione EQU-3	11
8.2.4 Pressioni sul paramento a monte in combinazione STR-1	
8.2.5 Pressioni sul paramento a monte in combinazione STR-2	
8.2.6 Pressioni sul paramento a monte in combinazione STR-3	13
8.2.7 Pressioni sul paramento a monte in combinazione STR-4	_
8.2.8 Pressioni sul paramento a monte in combinazione GEO-1	
8.2.9 Pressioni sul paramento a monte in combinazione GEO-2	
8.2.10 Pressioni sul paramento a monte in combinazione SIS-1	
8.2.11 Pressioni sul paramento a monte in combinazione SLE-1	
8.2.12 Pressioni sul paramento a monte in combinazione SLE-2	
9 Risultante delle azioni agenti sul muro	
9.1 Combinazioni di calcolo	17
9.1.1 Combinazione di carico EQU-1	17
9.1.2 Combinazione di carico EQU-2	
9.1.3 Combinazione di carico EQU-3	
9.1.4 Combinazione di carico STR-1	
9.1.5 Combinazione di carico STR-2	
9.1.6 Combinazione di carico STR-3	
9.1.7 Combinazione di carico STR-4	
9.1.8 Combinazione di carico SIS-1	
10 Verifiche di stabilità locale	
10.1 Tensioni trasmesse sul terreno	
10.2 Verifica allo scorrimento sul piano di posa	
10.3 Verifica a ribaltamento	
10.4 Verifica di collasso per carico limite del complesso fondazione-terreno	
11 Verifica di stabilità globale dell'opera sul pendio	
12 Parametri per dimensionamento armatura	
13 Sollecitazioni e verifiche strutturali	21

1 Descrizione del software

Si tratta di un programma di calcolo strutturale dedicato al progetto e verifica di Opere di Sostegno in cemento armato e a gravità. Il programma permette il calcolo delle spinte nelle diverse combinazioni di calcolo analizzate, l'esecuzione di verifiche di stabilità locale e globale di natura geotecnica, la progettazione delle parti in cemento armato e la verifica di resistenza strutturale. Nella determinazione delle sollecitazioni strutturali può utilizzare un proprio solutore agli elementi finiti tridimensionale fornito col pacchetto. Nella relazione di calcolo vengono riportati i dati di input, le combinazioni di calcolo adottate, le pressioni e le spinte trovate, nonchè i risultati delle verifiche geotecniche e strutturali. Vengono anche prodotte le tavole con i prospetti e le distinte di armatura, ed il computo metrico delle principali grandezze.

SPECIFICHE TECNICHE

Denominazione del software: WallCAD 7

Produttore del software: Concrete

Concrete srl, via della Pieve, 15, 35121 PADOVA - Italy

http://www.concrete.it

Rivenditore: CONCRETE SRL - Via della Pieve 19 - 35121 Padova - tel.049-8754720

Versione: 7.33

Identificatore licenza: WP-2119796

Intestatario della licenza: Equipe Fiemme - Piazza Scopoli, 9 - Cavalese (TN)

Versione regolarmente licenziata

SCHEMATIZZAZIONE STRUTTURALE E CRITERI DI CALCOLO DELLE SOLLECITAZIONI

Il programma permette il calcolo della spinta delle terre mediante metodi propri dell'Equilibrio limite e la valutazione della stabilità globale con metodi propri della stabilità dei pendii; le azioni sismiche vengono valutate mediante un approccio pseudo-statico, in accordo alle varie normative adottate. Le spinte vengono pensate agenti su un tratto di lunghezza unitaria di un muro di lunghezza indefinita, con sezione che resta quindi in stato piano di deformazione; nel caso di elementi discontinui con lo sviluppo del muro (come pali, tiranti, contrafforti, carichi puntuali) viene invece creato un modello 3D ad elementi finiti, di lunghezza e condizioni di vincolo alle estremità deciso dal progettista. In quest'ultimo caso le sollecitazioni sono calcolate dal modello numerico per integrazione nel tratto di verifica. La reazione del suolo è quella teorica di fondazione rigida su suolo elastico non reagente al sollevamento; nel caso di studio con modello fem il suolo è modellato mediante un numero elevato di molle elastoplastiche verticali, non reagenti al sollevamento; in direzione orizzontale sono altresì presenti molle elastiche di modulo di reazione proporzionale al verticale. I pali sono modellati suddividendo l'asta in più aste immerse nei terreni della stratigrafia definita. Nei nodi di divisione tra le aste vengono inserite molle assialsimmetriche elastoplastiche precaricate dalla spinta a riposo che hanno come pressione limite minima la spinta attiva e come pressione limite massima la spinta passiva modificabile attraverso opportuni coefficienti. I tiranti sono modellati mediante molle elastoplastiche di rigidezza equivalente al sistema terreno/tratto libero/tratto ancorato, e di limiti plastici a trazione e compressione assegnati. I carichi possono essere inseriti sia sul muro che sul terreno; in quest'ultimo caso il carico uniforme è trattato come uno strato di spessore equivalente, mentre gli altri tipi di carico (lineare o nastriforme) vengono diffusi in orizzontale e sovrapposti alle restanti azioni.

VERIFICHE DELLE MEMBRATURE IN CEMENTO ARMATO

Nel caso più generale le verifiche degli elementi in c.a. possono essere condotte agli stati limite in accordo al D.M. 17/01/18, al D.M. 14/01/08, al D.M. 09/01/96 o secondo Eurocodice 2, oppure ove consentito col metodo delle tensioni ammissibili (D.M. 14/01/92). Le membrature in c.a. sono verificate a pressoflessione e taglio come piastre non espressamente armate a taglio, i pali sono verificati a pressoflessione, taglio e punzonamento verso la suola; nel caso di micropali si considera la sola resistenza del tubolare in acciaio, verificato secondo Eurocodice 3 in accordo al D.M. 17/01/18 o al D.M. 14/01/08

2 Normative di riferimento

Normative di analisi e verifica:

Norme Tecniche per le Costruzioni - D.M. 17.01.2018 (NTC 2018)

Valutazione delle azioni sismiche:

Norme Tecniche per le Costruzioni - D.M. 17.01.2018 (NTC 2018) Cap.7

Verifiche strutturali:

Norme Tecniche per le Costruzioni - D.M. 17.01.2018 (NTC 2018) Cap.4

3 Geometria del muro

La descrizione della geometria del muro si avvale di una duplice rappresentazione, una schematica, tramite la sezione trasversale, e l'altra in forma analitica tramite le dimensioni principali degli elementi costituenti.

3.1 Sistema di riferimento

Nella seguente rappresentazione schematica viene rappresentata la posizione e l'orientamento del sistema di riferimento rispetto ai vertici principali della sagoma del muro.

Sistema di riferimento adottato per le coordinate:
Ascisse X (espresse in centimetri) positive verso destra
Ordinate Y (espresse in centimetri) positive verso l'alto
Le forze orizzontali sono considerate positive se agenti da sinistra verso destra
Le forze verticali sono considerate positive se agenti dal basso verso l'alto
Tutti i valori in output sono riferiti ad 1 centimetro di muro.

3.2 Rappresentazione geometrica, sezione trasversale

3.3 Rappresentazione analitica

Il muro viene convenzionalmente suddiviso in blocchi principali ed eventuali accessori.

Ingombro globale

Larghezza totale del muro	:	140 cm
Altezza totale del muro	:	310 cm
Peso specifico del muro	:	$2500 daN/m^3$
Peso specifico delle falde	:	$1000 daN/m^3$

Paramento

Base inf.	:	25 cm
Base sup.	:	25 cm
Altezza	:	260 cm
Disassamento	:	0 cm

Mensola sinistra in fondazione

Larghezza	: 25 cm
Alt.interna	: 50 cm
Alt.esterna	: 50 cm
Disassamento	: 0 cm

Zoccolo centrale in fondazione

Larghezza	: 25 cm
Altezza a sx	: 50 cm
Altezza a dx	: 50 cm
Sfalsamento	: 0 cm

Mensola destra in fondazione

Larghezza	:	90	cm
Alt.interna	:	50	cm
Alt.esterna	:	50	cm
Disassamento	:	0 0	cm

4 Caratteristiche dei terreni

Significato dei simboli e unità di misura:

Gsat: Peso specifico saturo del terreno, utilizzato nelle zone immerse (daN/m3)

Gnat: Peso specifico naturale del terreno, utilizzato nelle zone non immerse (daN/m3)

Fi: Angolo di attrito interno del terreno (deg)

C': Coesione drenata del terreno (daN/cm2)

Cnd: Coesione non drenata del terreno (daN/cm2)

Delta: Angolo di attrito all'interfaccia terreno/paramento (deg)

Al: Adesione della coesione all'interfaccia terreno/cls (-)

OCR: Coefficiente di sovraconsolidazione del terreno (-)

Ko: Coefficiente di spinta a riposo del terreno (-)

E: Modulo elastico longitudinale del terreno (daN/cm2)

G: Modulo elastico tangenziale del terreno (daN/cm2)

Perm: Permeabilità del terreno (cm/sec)

N	Denominazione	Gsat	Gnat	Fi	C'	Cnd	Delta	ΑI	OCR	Ko	Ε	G	Perm
1	PERIZIA	2000	1900	33.00	0.050	0.000	0.00	0.00	1.00	0.46	500	190	1,00E-03

5 Geometria degli strati

Vengono mostrate in forma tabellare le sequenze di punti che costituiscono le poligonali di separazione degli strati di terreno.

Strato n.1, materiale sottostante: PERIZIA

Progressivo	Z.	X [cm]	Y [cm]
1	1	13	260
2	2	2000	260

Strato n.2, materiale sottostante: PERIZIA

Progressivo	N.	X [cm]	Y [cm]
1	3	-2209	-1216
2	4	-38	-1

Strato n.3, materiale sottostante: PERIZIA

Stratigrafia adattata al profilo del muro.

Progressivo	N.	X [cm]	Y [cm]
1	-	-38	-50
2	-	-13	-50
3	-	13	-50
4	-	103	-50

6 Geometria dei carichi

Le coordinate e le componenti dei carichi stampate in questo paragrafo sono riferite al sistema di riferimento relativo alla sezione trasversale, dove gli assi X e Y locali coincidono rispettivamente con gli assi X e Z globali. L'asse Y globale si sviluppa nella profondità del muro. Tutte le tipologie di carico, esclusa quella puntuale, hanno componenti e coordinate diverse da zero solo lungo gli assi locali X e Y. Nel caso di carichi puntuali viene indicata anche la posizione in profondità (P), riferita rispetto alla sezione trasversale iniziale dell'intervento e quindi lungo l'asse Y globale.

6.1 Carichi uniformi

```
Comp.permanente di carico uniforme a monte : 0 daN/cm²
Comp.variabile di carico uniforme a monte : -0.05 daN/cm²

Ricoprimento non strutturale applicato al paramento di valle
Peso specifico del rivestimento : 2200 daN/m³
Spessore del rivestimento : 15 cm
```

7 Metodi di calcolo delle azioni e delle verifiche

Metodo di calcolo della spinta del terreno

```
Metodo di calcolo della portanza del terreno
                                                   : Brinch-Hansen
Normativa adottata per le verifiche locali
                                                   : D.M. 17/01/2018 Norme Tecniche per le
Costruzioni
Normativa adottata per il sisma: D.M. 17/01/2018 Norme tecniche per le costruzioni (NTC 2018).
Localizzazione dell'opera: Trento, Ziano Di Fiemme
Vita nominale dell'opera (Tab. 2.4.I): 100 anni
Classe d'uso (Tab. 2.4.II): 3
Parametri sismici calcolati per lo stato limite : SLV
Accelerazione orizzontale massima attesa su sito di riferimento rigido (normalizzata) aq/q:
0.1029 g
Categoria del suolo di fondazione: B ref.[Tab.3.2.II]
Coefficiente di amplificazione stratigrafica Ss: 1.5 ref.[Tab.3.2.IV]
Coefficiente di amplificazione topografica St: 1.2 ref.[Tab.3.2.V]
Coefficiente di riduzione dell'accelerazione massima per il sito (Beta s): 0.24
ref.[Tab.7.11.I]
Coefficiente di riduzione dell'accelerazione massima per muri (Beta m): 0.38 ref.[§7.11.6.2.1]
Accelerazione orizzontale massima attesa al sito (normalizzata) amax/g: 0.1852 g ref.[7.11.8]
Coefficiente sismico orizzontale kh: 0.07
                                           ref.[7.11.6]
                                          ref.[7.11.7]
Coefficiente sismico verticale kv: 0.035
Punto di applicazione della forza dinamica: stesso punto di quella statica
Effetto della componente verticale di accelerazione sismica trascurato.
```

: Mononobe-Okabe

7.1 Descrizione della normativa sismica

In zona sismica per l'opera di sostegno viene condotta una analisi pseudostatica secondo quanto previsto dalla normativa vigente (D.M. 17/01/2018 NTC, paragrafo 7.11.6).

Nell'analisi pseudostatica, l'azione sismica è rappresentata da un insieme di forze statiche orizzontali e verticali, pari al prodotto delle forze di gravità moltiplicate per un coefficiente sismico.

I coefficienti sismici orizzontali e verticali, applicati a tutte le masse potenzialmente instabili, sono calcolati rispettivamente come:

```
\begin{aligned} k_h &= \beta_m \cdot (a_{max}/g) & [7.11.6] \\ k_v &= \pm 0.5 \cdot k_h & [7.11.7] \\ a_{max} &= S_S \cdot S_T \cdot a_g & [7.11.8] \end{aligned}
```

Dove: β_m è il coefficiente di riduzione dell'accelerazione massima attesa al sito;

a_{max} è l'accelerazione orizzontale massima attesa al sito;

g è l'accelerazione di gravità;

S_S è il coefficiente di amplificazione stratigrafica, in funzione dei terreni del sito (§3.2.3.2);

S_T è il coefficiente di amplificazione topografica, in funzione del pendio (§3.2.3.2);

ag è l'accelerazione orizzontale massima attesa su sito di riferimento rigido.

I valori di β_m sono 0.38 nelle verifiche allo stato limite ultimo (SLV), 0.47 nelle verifiche allo stato limite di esercizio (SLD); per muri non liberi di subire spostamenti relativi rispetto al terreno assume valore unitario.

Il coefficiente S_s di amplificazione stratigrafica è funzione dei terreni del sito ed ha valore unitario sul terreno di riferimento; i valori minimi e massimi di S_s sono riportati nella normativa in Tab. 3.2.IV.

Il coefficiente S_T di amplificazione topografica è maggiore di 1 per strutture in sommità di un pendio o in cresta, mentre è unitario negli altri casi; i valori massimi di S_T sono riportati nella normativa in Tab. 3.2.V, in funzione della categoria topografica della superficie.

I coefficienti sismici sopra definiti sono considerati costanti lungo l'altezza del muro.

L'incremento di spinta dovuto al sisma può venire assunto agente nello stesso punto di quella statica, nel caso di muri di sostegno liberi di traslare o di ruotare intorno al piede, oppure a metà altezza dell'opera, negli altri casi.

La spinta totale di progetto E_d agente sull'opera di sostegno è data da:

$$E_d = \frac{1}{2} \cdot \gamma \cdot (1 \pm k_v) \cdot K \cdot h^2 + E_{ws}$$

dove: γè il peso specifico del terreno;

K è il coefficiente di spinta del terreno;

h è l'altezza del muro;

Ews è la spinta idrostatica;

Il coefficiente di spinta del terreno viene calcolato come nel caso statico ma con le seguenti modifiche*:

- nel caso di terreno sotto falda, applicando una rotazione al profilo del muro e degli strati di terreno, secondo le espressioni

$$\tan \theta_A = \frac{\gamma}{\gamma - \gamma_w} \cdot \frac{k_h}{1 + k_v}$$
 e $\tan \theta_B = \frac{\gamma}{\gamma - \gamma_w} \cdot \frac{k_h}{1 - k_v}$

dove: γ è il peso specifico del terreno saturo;

γw è il peso specifico dell'acqua;

- nel caso di terreno sopra falda, applicando una rotazione al profilo del muro e degli strati di terreno, secondo le espressioni

$$\tan \theta_A = \frac{k_h}{1 + k_h}$$
 e $\tan \theta_B = \frac{k_h}{1 - k_h}$

*eccetto il metodo di Mononobe-Okabe, che include il sisma in modo nativo nella formulazione.

L'acqua interstiziale viene considerata non libera all'interno dello scheletro solido del terreno, trattando quindi quest'ultimo come un mezzo monofase. In presenza di acqua libera sulla faccia del muro viene aggiunta la sovrapressione (considerata agente nel caso peggiore, cioè da monte verso valle) dovuta all'effetto idrodinamico, secondo la relazione:

$$q(z) = \frac{7}{8} \cdot k_h \cdot \gamma_w \cdot \sqrt{h \cdot z}$$

dove: h è l'altezza totale della zona interessata dall'acqua libera;

z è la distanza dal pelo libero dell'acqua;

Stabilità globale

In presenza di sisma viene condotta una analisi pseudo-statica secondo quanto previsto dalla normativa vigente (D.M. 17/01/2018 NTC, paragrafo 7.11.3.5, 7.11.4), secondo cui l'azione sismica è rappresentata da un'azione statica equivalente, proporzionale al peso del volume di terreno instabile ed ai coefficienti sismici orizzontale e verticale:

$$\begin{aligned} k_h &= \beta_s \cdot (a_{max}/g) & [7.11.3] \\ k_v &= \pm 0.5 \cdot k_h & [7.11.4] \\ a_{max} &= S_S \cdot S_T \cdot a_g & [7.11.5] \end{aligned}$$

Dove: β_s è il coefficiente di riduzione dell'accelerazione massima attesa al sito;

amax è l'accelerazione orizzontale massima attesa al sito, in funzione della zona sismica;

g è l'accelerazione di gravità;

Ss è il coefficiente di amplificazione stratigrafica, in funzione dei terreni del sito;

S_T è il coefficiente di amplificazione topografica, in funzione del pendio;

 a_{g} è l'accelerazione orizzontale massima attesa su sito di riferimento rigido.

I valori di β_s sono riportati nella normativa in Tab. 7.11.I, in funzione della categoria di sottosuolo e della accelerazione orizzontale massima a_g .

Il coefficiente S_s di amplificazione stratigrafica è funzione dei terreni del sito ed ha valore unitario sul terreno di riferimento; i valori minimi e massimi di S_s sono riportati nella normativa in Tab. 3.2.IV.

Il coefficiente S_T di amplificazione topografica è maggiore di 1 per strutture in sommità di un pendio o in cresta, mentre è unitario negli altri casi; i valori massimi di S_T sono riportati nella normativa in Tab. 3.2.V, in funzione della categoria topografica della superficie.

Il calcolo viene condotto nelle combinazioni stabilite dal progettista, con i coefficienti parziali sulle azioni, sui materiali e resistenze indicati; di default vengono create combinazioni per il caso statico e sismico.

7.2 Descrizione del metodo di calcolo delle spinte

La teoria di Mononobe-Okabe fa uso del *metodo dell'equilibrio limite* e può essere considerata una estensione del metodo di Coulomb, in cui alle usuali spinte al contorno del cuneo instabile di terreno vengono sommate anche le azioni inerziali orizzontali e verticali dovute all'accelerazione delle masse.

Le ipotesi che stanno alla base del metodo sono quindi:

Terreno isotropo, omogeneo e dotato di attrito e/o coesione.

Terreno che, a causa degli spostamenti del muro, si trova in uno stato di equilibrio plastico.

Superfice di rottura piana.

Superficie superiore del cuneo anche inclinata ma di forma piana.

La resistenza per attrito e per coesione si sviluppa uniformemente lungo la superficie di rottura.

Può esistere attrito tra paramento del muro e terreno, che si sviluppa al primo spostamento del muro.

Il paramento del muro può essere inclinato ma non spezzato in più parti.

L'effetto delle accelerazioni kh e kv viene intrinsecamente considerato nel baricentro del cuneo instabile.

Le spinte Attiva e Passiva si calcolano come:

$$P_{a/p} = \frac{1}{2} \gamma \cdot h^2 \cdot (1 - k_v) \cdot K_{a/p}$$

il coefficiente K_{a/p} viene calcolato utilizzando la formulazione di Mononobe-Okabe proposta nell'ordinanza 3274 e successiva correzione 3316, in cui i simboli usati sono:

φ = angolo di attrito interno del terreno.

 ψ = angolo di inclinazione rispetto all'orizzontale della parete interessata del muro.

 β = angolo di inclinazione rispetto all'orizzontale della superficie del terrapieno.

 δ = angolo di attrito terreno-muro.

 θ = angolo di rotazione addizionale definito come segue.

$$\tan(\theta) = \frac{k_h}{1 \mp k_y}$$

Il coefficiente per stati di spinta attiva si divide in due casi:

$$\beta \leq \phi - \theta: \qquad K_a = \frac{\sin^2(\psi + \phi - \theta)}{\cos \theta \cdot \sin^2 \psi \cdot \sin(\psi - \theta - \delta) \cdot \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta - \theta)}{\sin(\psi - \theta - \delta) \cdot \sin(\psi + \beta)}}\right]^2}$$

$$\beta > \phi - \theta$$
: $K_a = \frac{\sin^2(\psi + \phi - \theta)}{\cos\theta \cdot \sin^2\psi \cdot \sin(\psi - \theta - \delta)}$

Il coefficiente per stati di spinta passiva è invece:

$$K_{p} = \frac{\sin^{2}(\psi + \phi - \theta)}{\cos \theta \cdot \sin^{2} \psi \cdot \sin(\psi + \theta) \cdot \left[1 - \sqrt{\frac{\sin(\phi) \cdot \sin(\phi + \beta - \theta)}{\sin(\psi + \beta) \cdot \sin(\psi + \theta)}}\right]^{2}}$$

Nel caso di accelerazione sismica solo orizzontale l'angolo θ è unico e la spinta attiva e passiva risulta univocamente determinata; viceversa le formule forniscono due distinti valori, che corrispondono alla presenza di accelerazione sismica verticale verso l'alto e verso il basso.

7.3 Descrizione del metodo di calcolo della portanza

La capacità portante viene valutata attraverso la formula di Brinch-Hansen, nel caso generale:

$$Q_{\text{lim}} = c \cdot N_c \cdot s_c \cdot d_c \cdot i_c \cdot b_c \cdot g_c + q \cdot N_q \cdot s_q \cdot d_q \cdot i_q \cdot b_q \cdot g_q + \frac{1}{2} \gamma \cdot B \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma \cdot i_\gamma \cdot b_\gamma \cdot g_\gamma$$

Nel caso di terreno eminentemente coesivo ($\phi = 0$) tale relazione diventa:

$$Q_{\text{lim}} = (2+\pi) \cdot c_u \cdot (1+s'_c+d'_c-i'_c-b'_c-g'_c)+q$$

dove:

 γ = peso di volume dello strato di fondazione;

B = larghezza efficace della fondazione (depurata dell'eventuale eccentricità del carico $B = B_f - 2e$);

L = lunghezza efficace della fondazione (depurata dell'eventuale eccentricità del carico L = Lf - 2e);

c = coesione dello strato di fondazione;

c_u = coesione non drenata dello strato di fondazione;

q = sovraccarico del terreno sovrastante il piano di fondazione;

N_v, N_c, N_q = fattori di capacità portante;

sy, sc, sq = fattori di forma della fondazione;

dy, dc, dq = fattori di profondità del piano di posa della fondazione.

iy, ic, iq = fattori di inclinazione del carico;

by, bc, bq = fattori di inclinazione della base della fondazione;

gy, gc, gq = fattori di inclinazione del piano campagna;

Per la teoria di Brinch-Hansen i coefficienti sopra definiti assumono le espressioni che seguono:

$$\begin{split} N_c &= \left(N_q - 1\right) \cdot ctg\phi \, ; \quad N_q = tg^2 \bigg(45^o + \frac{\phi}{2}\bigg) \cdot e^{(\pi \cdot tg\phi)} \, ; \quad N_\gamma = 1.5 \cdot \left(N_q - 1\right) \cdot tg\phi \\ s_c &= 1 + \frac{B}{L} \cdot \frac{N_q}{N_c} \, ; \quad s_c = 0.2 \cdot \frac{B}{L} \, ; \quad s_q = 1 + \frac{B}{L} \cdot tg\phi \, ; \quad s_\gamma = 1 - 0.4 \cdot \frac{B}{L} \\ d_c &= 1 + 0.4 \cdot k \, ; \quad d_c = 0.4 \cdot k \, ; \quad d_q = 1 + 2 \cdot k \cdot tg\phi \cdot \left(1 - \sin\phi\right)^2 \, ; \quad d_\gamma = 1 \\ i_c &= i_q - \frac{1 - i_q}{N_q - 1} \, ; \quad i_c = 0.5 - 0.5 \sqrt{1 - \frac{H}{B \cdot L \cdot c_a}} \, ; \quad i_q = \left(1 - \frac{0.5 \cdot H}{V + B \cdot L \cdot c_a \cdot ctg\phi}\right)^5 \, ; \\ i_\gamma &= \left(1 - \frac{0.7 \cdot H}{V + B \cdot L \cdot c_a \cdot ctg\phi}\right)^5 \quad (\text{se η=0}) ; \quad i_\gamma = \left(1 - \frac{\left(0.7 - \eta^o / 450^o\right) \cdot H}{V + B \cdot L \cdot c_a \cdot ctg\phi}\right)^5 \quad (\text{se η>0}) \\ g_c &= 1 - \frac{\beta^o}{147^o} \, ; \quad g'_c = \frac{\beta^o}{147^o} \, ; \quad g_q = \left(1 - 0.5 \cdot tg\beta\right)^5 ; \quad g_\gamma = g_q \\ b_c &= 1 - \frac{\eta^o}{147^o} \, ; \quad b'_c = \frac{\eta^o}{147^o} \, ; \quad b_q = e^{(-2.7 \cdot \eta \cdot tg\phi)} \, ; \quad b_\gamma = e^{(-2.7 \cdot \eta \cdot tg\phi)} \end{split}$$

$$\text{dove: } k = \frac{D}{B_f} \quad \text{(se } \frac{D}{B_f} \le 1\text{); } \quad k = arctg \left(\frac{D}{B_f}\right) \quad \text{(se } \frac{D}{B_f} > 1\text{)}$$

nelle quali si sono considerati i seguenti dati:

 ϕ = angolo di attrito dello strato di fondazione;

ca = aderenza alla base della fondazione;

 η = inclinazione del piano di posa della fondazione sull'orizzontale (η = 0 se orizzontale);

 β = inclinazione del pendio;

H = componente orizzontale del carico trasmesso sul piano di posa della fondazione;

V = componente verticale del carico trasmesso sul piano di posa della fondazione;

D = profondità della fondazione.

8 Distribuzioni di spinte e pressioni

8.1 Coefficienti di spinta

C	oeffi	cienti	i di s	ointa	sul para	amento a	monte
Strato	Tra	tto d	i calc	olo	Combi	nazione	Coefficiente
N.	Xini	Xfin	Yini	Yfin	Index	Nome	Ka
1	13	13	260	0	1	EQU-1	0.295
1	13	13	260	0	2	EQU-2	0.295
1	13	13	260	0	3	EQU-3	0.358
1	13	13	260	0	4	STR-1	0.295
1	13	13	260	0	5	STR-2	0.295
1	13	13	260	0	6	STR-3	0.295
1	13	13	260	0	7	STR-4	0.295
1	13	13	260	0	8	GEO-1	0.369
1	13	13	260	0	9	GEO-2	0.369
1	13	13	260	0	10	SIS-1	0.335
1	13	13	260	0	11	SLE-1	0.295
1	13	13	260	0	12	SLE-2	0.295

C	oeffic	ienti	di sp	inta s	sul filo n	nensola	a monte
Strato	Tra	tto d	calc	olo	Combi	nazione	Coefficiente
N.	Xini	Xfin	Yini	Yfin	Index	Nome	Ka
1	103	103	260	-50	1	EQU-1	0.295
1	103	103	260	-50	2	EQU-2	0.295
1	103	103	260	-50	3	EQU-3	0.358
1	103	103	260	-50	4	STR-1	0.295
1	103	103	260	-50	5	STR-2	0.295
1	103	103	260	-50	6	STR-3	0.295
1	103	103	260	-50	7	STR-4	0.295
1	103	103	260	-50	8	GEO-1	0.369
1	103	103	260	-50	9	GEO-2	0.369
1	103	103	260	-50	10	SIS-1	0.335
1	103	103	260	-50	11	SLE-1	0.295
1	103	103	260	-50	12	SLE-2	0.295

	oeffi	cienti	i di sı	ointa	sul filo	mensola	a valle
Strato	Tra	tto d	calc	olo	Combi	nazione	Coefficiente
N.	Xini	Xfin	Yini	Yfin	Index	Nome	Kp
1	38	38	-1	-50	1	EQU-1	1.106
1	38	38	-1	-50	2	EQU-2	1.106

^{*} in presenza di inclinazione dei carichi elevata, a favore di sicurezza, non sono stati usati i coeff. s_i insieme a i_i.

1	0	0	0	0	3	EQU-3	0
1	38	38	-1	-50	4	STR-1	1.106
1	38	38	-1	-50	5	STR-2	1.106
1	38	38	-1	-50	6	STR-3	1.106
1	38	38	-1	-50	7	STR-4	1.106
1	0	0	0	0	8	GEO-1	0
1	0	0	0	0	9	GEO-2	0
1	0	0	0	0	10	SIS-1	0
1	38	38	-1	-50	11	SLE-1	1.106
1	38	38	-1	-50	12	SLE-2	1.106

8.2 Pressioni

Le distribuzioni delle pressioni esercitate dai terreni circostanti il muro sono date attraverso un insieme di segmenti generalmente coincidenti i profili laterali dell'intervento murario. Ogni segmento presenta una distribuzione lineare di pressione che può variare vettorialmente da un valore (VX1, VY1) sino ad un valore (VX2, VY2).Le distribuzioni di pressione sono fornite per causa originante (pressione del terreno o pressione dell'acqua) e sommate globalmente.

8.2.1 Pressioni sul paramento a monte in combinazione EQU-1

N.	tra	tto di	cal	colo		terr	eno			acc	ηua			tot	ale	
	X ₁	Y ₁	X ₂	Y ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂
1	13	260	13	250	0	0	0	0	0	0	0	0	0	0	0	0
2	13	250	13	240	0	0	0	0	0	0	0	0	0	0	0	0
3	13	240	13	230	0	0	0	0	0	0	0	0	0	0	0	0
4	13	230	13	220	0	0	0	0	0	0	0	0	0	0	0	0
5	13	220	13	210	0	0	0	0	0	0	0	0	0	0	0	0
6	13	210	13	200	0	0	0	0	0	0	0	0	0	0	0	0
7	13	200	13	190	0	0	0	0	0	0	0	0	0	0	0	0
8	13	190	13	180	0	0	-0.01	0	0	0	0	0	0	0	-0.01	0
9	13	180	13	170	-0.01	0	-0.01	0	0	0	0	0	-0.01	0	-0.01	0
10	13	170	13	160	-0.01	0	-0.02	0	0	0	0	0	-0.01	0	-0.02	0
11	13	160	13	150	-0.02	0	-0.02	0	0	0	0	0	-0.02	0	-0.02	0
12	13	150	13	140	-0.02	0	-0.03	0	0	0	0	0	-0.02	0	-0.03	0
13	13	140	13	130	-0.03	0	-0.03	0	0	0	0	0	-0.03	0	-0.03	0
14	13	130	13	120	-0.03	0	-0.04	0	0	0	0	0	-0.03	0	-0.04	0
15	13	120	13	110	-0.04	0	-0.04	0	0	0	0	0	-0.04	0	-0.04	0
16	13	110	13	100	-0.04	0	-0.05	0	0	0	0	0	-0.04	0	-0.05	0
17	13	100	13	90	-0.05	0	-0.05	0	0	0	0	0	-0.05	0	-0.05	0
18	13	90	13	80	-0.05	0	-0.06	0	0	0	0	0	-0.05	0	-0.06	0
19	13	80	13	70	-0.06	0	-0.06	0	0	0	0	0	-0.06	0	-0.06	0
20	13	70	13	60	-0.06	0	-0.07	0	0	0	0	0	-0.06	0	-0.07	0
21	13	60	13	50	-0.07	0	-0.07	0	0	0	0	0	-0.07	0	-0.07	0
22	13	50	13	40	-0.07	0	-0.08	0	0	0	0	0	-0.07	0	-0.08	0
23	13	40	13	30	-0.08	0	-0.08	0	0	0	0	0	-0.08	0	-0.08	0
24	13	30	13	20	-0.08	0	-0.09	0	0	0	0	0	-0.08	0	-0.09	0
25	13	20	13	10	-0.09	0	-0.09	0	0	0	0	0	-0.09	0	-0.09	0
26	13	10	13	0	-0.09	0	-0.1	0	0	0	0	0	-0.09	0	-0.1	0

8.2.2 Pressioni sul paramento a monte in combinazione EQU-2

N.	tra	tto di	cal	colo		terr	eno			acc	qua			tot	ale	
	X ₁	Y ₁	X_2	Y ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂	Vx_1	Vy ₁	Vx_2	Vy ₂
1	13	260	13	250	0	0	0	0	0	0	0	0	0	0	0	0
2	13	250	13	240	0	0	0	0	0	0	0	0	0	0	0	0
3	13	240	13	230	0	0	0	0	0	0	0	0	0	0	0	0

4	13	230	13	220	0	0	0	0	0	0	0	0	0	0	0	0
5	13	220	13	210	0	0	0	0	0	0	0	0	0	0	0	0
6	13	210	13	200	0	0	0	0	0	0	0	0	0	0	0	0
7	13	200	13	190	0	0	-0.01	0	0	0	0	0	0	0	-0.01	0
8	13	190	13	180	-0.01	0	-0.02	0	0	0	0	0	-0.01	0	-0.02	0
9	13	180	13	170	-0.02	0	-0.02	0	0	0	0	0	-0.02	0	-0.02	0
10	13	170	13	160	-0.02	0	-0.03	0	0	0	0	0	-0.02	0	-0.03	0
11	13	160	13	150	-0.03	0	-0.04	0	0	0	0	0	-0.03	0	-0.04	0
12	13	150	13	140	-0.04	0	-0.04	0	0	0	0	0	-0.04	0	-0.04	0
13	13	140	13	130	-0.04	0	-0.05	0	0	0	0	0	-0.04	0	-0.05	0
14	13	130	13	120	-0.05	0	-0.05	0	0	0	0	0	-0.05	0	-0.05	0
15	13	120	13	110	-0.05	0	-0.06	0	0	0	0	0	-0.05	0	-0.06	0
16	13	110	13	100	-0.06	0	-0.07	0	0	0	0	0	-0.06	0	-0.07	0
17	13	100	13	90	-0.07	0	-0.07	0	0	0	0	0	-0.07	0	-0.07	0
18	13	90	13	80	-0.07	0	-0.08	0	0	0	0	0	-0.07	0	-0.08	0
19	13	80	13	70	-0.08	0	-0.08	0	0	0	0	0	-0.08	0	-0.08	0
20	13	70	13	60	-0.08	0	-0.09	0	0	0	0	0	-0.08	0	-0.09	0
21	13	60	13	50	-0.09	0	-0.1	0	0	0	0	0	-0.09	0	-0.1	0
22	13	50	13	40	-0.1	0	-0.1	0	0	0	0	0	-0.1	0	-0.1	0
23	13	40	13	30	-0.1	0	-0.11	0	0	0	0	0	-0.1	0	-0.11	0
24	13	30	13	20	-0.11	0	-0.12	0	0	0	0	0	-0.11	0	-0.12	0
25	13	20	13	10	-0.12	0	-0.12	0	0	0	0	0	-0.12	0	-0.12	0
26	13	10	13	0	-0.12	0	-0.13	0	0	0	0	0	-0.12	0	-0.13	0

8.2.3 Pressioni sul paramento a monte in combinazione EQU-3

N.	tra	tto di	cal	colo		terr	eno			acc	ηua			tot	ale	
	X ₁	Y ₁	X ₂	Y ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂	V _{X1}	Vy ₁	Vx2	Vy ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂
1	13	260	13	250	0	0	0	0	0	0	0	0	0	0	0	0
2	13	250	13	240	0	0	0	0	0	0	0	0	0	0	0	0
3	13	240	13	230	0	0	0	0	0	0	0	0	0	0	0	0
4	13	230	13	220	0	0	0	0	0	0	0	0	0	0	0	0
5	13	220	13	210	0	0	0	0	0	0	0	0	0	0	0	0
6	13	210	13	200	0	0	0	0	0	0	0	0	0	0	0	0
7	13	200	13	190	0	0	0	0	0	0	0	0	0	0	0	0
8	13	190	13	180	0	0	0	0	0	0	0	0	0	0	0	0
9	13	180	13	170	0	0	0	0	0	0	0	0	0	0	0	0
10	13	170	13	160	0	0	-0.01	0	0	0	0	0	0	0	-0.01	0
11	13	160	13	150	-0.01	0	-0.02	0	0	0	0	0	-0.01	0	-0.02	0
12	13	150	13	140	-0.02	0	-0.02	0	0	0	0	0	-0.02	0	-0.02	0
13	13	140	13	130	-0.02	0	-0.03	0	0	0	0	0	-0.02	0	-0.03	0
14	13	130	13	120	-0.03	0	-0.04	0	0	0	0	0	-0.03	0	-0.04	0
15	13	120	13	110	-0.04	0	-0.05	0	0	0	0	0	-0.04	0	-0.05	0
16	13	110	13	100	-0.05	0	-0.05	0	0	0	0	0	-0.05	0	-0.05	0
17	13	100	13	90	-0.05	0	-0.06	0	0	0	0	0	-0.05	0	-0.06	0
18	13	90	13	80	-0.06	0	-0.07	0	0	0	0	0	-0.06	0	-0.07	0
19	13	80	13	70	-0.07	0	-0.08	0	0	0	0	0	-0.07	0	-0.08	0
20	13	70	13	60	-0.08	0	-0.08	0	0	0	0	0	-0.08	0	-0.08	0
21	13	60	13	50	-0.08	0	-0.09	0	0	0	0	0	-0.08	0	-0.09	0
22	13	50	13	40	-0.09	0	-0.1	0	0	0	0	0	-0.09	0	-0.1	0
23	13	40	13	30	-0.1	0	-0.1	0	0	0	0	0	-0.1	0	-0.1	0
24	13	30	13	20	-0.1	0	-0.11	0	0	0	0	0	-0.1	0	-0.11	0
25	13	20	13	10	-0.11	0	-0.12	0	0	0	0	0	-0.11	0	-0.12	0
26	13	10	13	0	-0.12	0	-0.13	0	0	0	0	0	-0.12	0	-0.13	0

8.2.4 Pressioni sul paramento a monte in combinazione STR-1

N.	tra	tto di	cal	colo		terr	eno			acc	ηua			tot	ale	
	X ₁	Y ₁	X ₂	Y ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂	V _{X1}	Vy ₁	Vx2	Vy ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂
1	13	260	13	250	0	0	0	0	0	0	0	0	0	0	0	0
2	13	250	13	240	0	0	0	0	0	0	0	0	0	0	0	0
3	13	240	13	230	0	0	0	0	0	0	0	0	0	0	0	0
4	13	230	13	220	0	0	0	0	0	0	0	0	0	0	0	0
5	13	220	13	210	0	0	0	0	0	0	0	0	0	0	0	0
6	13	210	13	200	0	0	0	0	0	0	0	0	0	0	0	0
7	13	200	13	190	0	0	0	0	0	0	0	0	0	0	0	0
8	13	190	13	180	0	0	0	0	0	0	0	0	0	0	0	0
9	13	180	13	170	0	0	0	0	0	0	0	0	0	0	0	0
10	13	170	13	160	0	0	0	0	0	0	0	0	0	0	0	0
11	13	160	13	150	0	0	-0.01	0	0	0	0	0	0	0	-0.01	0
12	13	150	13	140	-0.01	0	-0.01	0	0	0	0	0	-0.01	0	-0.01	0
13	13	140	13	130	-0.01	0	-0.02	0	0	0	0	0	-0.01	0	-0.02	0
14	13	130	13	120	-0.02	0	-0.02	0	0	0	0	0	-0.02	0	-0.02	0
15	13	120	13	110	-0.02	0	-0.03	0	0	0	0	0	-0.02	0	-0.03	0
16	13	110	13	100	-0.03	0	-0.04	0	0	0	0	0	-0.03	0	-0.04	0
17	13	100	13	90	-0.04	0	-0.04	0	0	0	0	0	-0.04	0	-0.04	0
18	13	90	13	80	-0.04	0	-0.05	0	0	0	0	0	-0.04	0	-0.05	0
19	13	80	13	70	-0.05	0	-0.05	0	0	0	0	0	-0.05	0	-0.05	0
20	13	70	13	60	-0.05	0	-0.06	0	0	0	0	0	-0.05	0	-0.06	0
21	13	60	13	50	-0.06	0	-0.06	0	0	0	0	0	-0.06	0	-0.06	0
22	13	50	13	40	-0.06	0	-0.07	0	0	0	0	0	-0.06	0	-0.07	0
23	13	40	13	30	-0.07	0	-0.07	0	0	0	0	0	-0.07	0	-0.07	0
24	13	30	13	20	-0.07	0	-0.08	0	0	0	0	0	-0.07	0	-0.08	0
25	13	20	13	10	-0.08	0	-0.09	0	0	0	0	0	-0.08	0	-0.09	0
26	13	10	13	0	-0.09	0	-0.09	0	0	0	0	0	-0.09	0	-0.09	0

8.2.5 Pressioni sul paramento a monte in combinazione STR-2

N.	tra	tto di	cal	colo		terr	eno			acc	qua			tot	ale	
	X ₁	Y ₁	X_2	Y ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂
1	13	260	13	250	0	0	0	0	0	0	0	0	0	0	0	0
2	13	250	13	240	0	0	0	0	0	0	0	0	0	0	0	0
3	13	240	13	230	0	0	0	0	0	0	0	0	0	0	0	0
4	13	230	13	220	0	0	0	0	0	0	0	0	0	0	0	0
5	13	220	13	210	0	0	0	0	0	0	0	0	0	0	0	0
6	13	210	13	200	0	0	0	0	0	0	0	0	0	0	0	0
7	13	200	13	190	0	0	-0.01	0	0	0	0	0	0	0	-0.01	0
8	13	190	13	180	-0.01	0	-0.01	0	0	0	0	0	-0.01	0	-0.01	0
9	13	180	13	170	-0.01	0	-0.02	0	0	0	0	0	-0.01	0	-0.02	0
10	13	170	13	160	-0.02	0	-0.02	0	0	0	0	0	-0.02	0	-0.02	0
11	13	160	13	150	-0.02	0	-0.03	0	0	0	0	0	-0.02	0	-0.03	0
12	13	150	13	140	-0.03	0	-0.04	0	0	0	0	0	-0.03	0	-0.04	0
13	13	140	13	130	-0.04	0	-0.04	0	0	0	0	0	-0.04	0	-0.04	0
14	13	130	13	120	-0.04	0	-0.05	0	0	0	0	0	-0.04	0	-0.05	0
15	13	120	13	110	-0.05	0	-0.05	0	0	0	0	0	-0.05	0	-0.05	0
16	13	110	13	100	-0.05	0	-0.06	0	0	0	0	0	-0.05	0	-0.06	0
17	13	100	13	90	-0.06	0	-0.06	0	0	0	0	0	-0.06	0	-0.06	0
18	13	90	13	80	-0.06	0	-0.07	0	0	0	0	0	-0.06	0	-0.07	0
19	13	80	13	70	-0.07	0	-0.07	0	0	0	0	0	-0.07	0	-0.07	0
20	13	70	13	60	-0.07	0	-0.08	0	0	0	0	0	-0.07	0	-0.08	0
21	13	60	13	50	-0.08	0	-0.09	0	0	0	0	0	-0.08	0	-0.09	0
22	13	50	13	40	-0.09	0	-0.09	0	0	0	0	0	-0.09	0	-0.09	0

23	13	40	13	30	-0.09	0	-0.1	0	0	0	0	0	-0.09	0	-0.1	0
24	13	30	13	20	-0.1	0	-0.1	0	0	0	0	0	-0.1	0	-0.1	0
25	13	20	13	10	-0.1	0	-0.11	0	0	0	0	0	-0.1	0	-0.11	0
26	13	10	13	0	-0.11	0	-0.11	0	0	0	0	0	-0.11	0	-0.11	0

8.2.6 Pressioni sul paramento a monte in combinazione STR-3

N.	tra	tto di	cal	colo		terr	eno			acc	qua			tot	ale	
	X ₁	Y ₁	X_2	Y ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂
1	13	260	13	250	0	0	0	0	0	0	0	0	0	0	0	0
2	13	250	13	240	0	0	0	0	0	0	0	0	0	0	0	0
3	13	240	13	230	0	0	0	0	0	0	0	0	0	0	0	0
4	13	230	13	220	0	0	0	0	0	0	0	0	0	0	0	0
5	13	220	13	210	0	0	0	0	0	0	0	0	0	0	0	0
6	13	210	13	200	0	0	0	0	0	0	0	0	0	0	0	0
7	13	200	13	190	0	0	0	0	0	0	0	0	0	0	0	0
8	13	190	13	180	0	0	0	0	0	0	0	0	0	0	0	0
9	13	180	13	170	0	0	-0.01	0	0	0	0	0	0	0	-0.01	0
10	13	170	13	160	-0.01	0	-0.02	0	0	0	0	0	-0.01	0	-0.02	0
11	13	160	13	150	-0.02	0	-0.03	0	0	0	0	0	-0.02	0	-0.03	0
12	13	150	13	140	-0.03	0	-0.03	0	0	0	0	0	-0.03	0	-0.03	0
13	13	140	13	130	-0.03	0	-0.04	0	0	0	0	0	-0.03	0	-0.04	0
14	13	130	13	120	-0.04	0	-0.05	0	0	0	0	0	-0.04	0	-0.05	0
15	13	120	13	110	-0.05	0	-0.05	0	0	0	0	0	-0.05	0	-0.05	0
16	13	110	13	100	-0.05	0	-0.06	0	0	0	0	0	-0.05	0	-0.06	0
17	13	100	13	90	-0.06	0	-0.07	0	0	0	0	0	-0.06	0	-0.07	0
18	13	90	13	80	-0.07	0	-0.08	0	0	0	0	0	-0.07	0	-0.08	0
19	13	80	13	70	-0.08	0	-0.08	0	0	0	0	0	-0.08	0	-0.08	0
20	13	70	13	60	-0.08	0	-0.09	0	0	0	0	0	-0.08	0	-0.09	0
21	13	60	13	50	-0.09	0	-0.1	0	0	0	0	0	-0.09	0	-0.1	0
22	13	50	13	40	-0.1	0	-0.11	0	0	0	0	0	-0.1	0	-0.11	0
23	13	40	13	30	-0.11	0	-0.11	0	0	0	0	0	-0.11	0	-0.11	0
24	13	30	13	20	-0.11	0	-0.12	0	0	0	0	0	-0.11	0	-0.12	0
25	13	20	13	10	-0.12	0	-0.13	0	0	0	0	0	-0.12	0	-0.13	0
26	13	10	13	0	-0.13	0	-0.14	0	0	0	0	0	-0.13	0	-0.14	0

8.2.7 Pressioni sul paramento a monte in combinazione STR-4

N.	tra	tto di	cal	colo		terr	eno			acc	qua			tot	ale	
	X ₁	Y ₁	X ₂	Y ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂	Vx ₁	Vy ₁	Vx2	Vy ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂
1	13	260	13	250	0	0	0	0	0	0	0	0	0	0	0	0
2	13	250	13	240	0	0	0	0	0	0	0	0	0	0	0	0
3	13	240	13	230	0	0	0	0	0	0	0	0	0	0	0	0
4	13	230	13	220	0	0	0	0	0	0	0	0	0	0	0	0
5	13	220	13	210	0	0	0	0	0	0	0	0	0	0	0	0
6	13	210	13	200	0	0	-0.01	0	0	0	0	0	0	0	-0.01	0
7	13	200	13	190	-0.01	0	-0.02	0	0	0	0	0	-0.01	0	-0.02	0
8	13	190	13	180	-0.02	0	-0.03	0	0	0	0	0	-0.02	0	-0.03	0
9	13	180	13	170	-0.03	0	-0.03	0	0	0	0	0	-0.03	0	-0.03	0
10	13	170	13	160	-0.03	0	-0.04	0	0	0	0	0	-0.03	0	-0.04	0
11	13	160	13	150	-0.04	0	-0.05	0	0	0	0	0	-0.04	0	-0.05	0
12	13	150	13	140	-0.05	0	-0.06	0	0	0	0	0	-0.05	0	-0.06	0
13	13	140	13	130	-0.06	0	-0.06	0	0	0	0	0	-0.06	0	-0.06	0
14	13	130	13	120	-0.06	0	-0.07	0	0	0	0	0	-0.06	0	-0.07	0
15	13	120	13	110	-0.07	0	-0.08	0	0	0	0	0	-0.07	0	-0.08	0

16	13	110	13	100	-0.08	0	-0.08	0	0	0	0	0	-0.08	0	-0.08	0
17	13	100	13	90	-0.08	0	-0.09	0	0	0	0	0	-0.08	0	-0.09	0
18	13	90	13	80	-0.09	0	-0.1	0	0	0	0	0	-0.09	0	-0.1	0
19	13	80	13	70	-0.1	0	-0.11	0	0	0	0	0	-0.1	0	-0.11	0
20	13	70	13	60	-0.11	0	-0.11	0	0	0	0	0	-0.11	0	-0.11	0
21	13	60	13	50	-0.11	0	-0.12	0	0	0	0	0	-0.11	0	-0.12	0
22	13	50	13	40	-0.12	0	-0.13	0	0	0	0	0	-0.12	0	-0.13	0
23	13	40	13	30	-0.13	0	-0.14	0	0	0	0	0	-0.13	0	-0.14	0
24	13	30	13	20	-0.14	0	-0.14	0	0	0	0	0	-0.14	0	-0.14	0
25	13	20	13	10	-0.14	0	-0.15	0	0	0	0	0	-0.14	0	-0.15	0
26	13	10	13	0	-0.15	0	-0.16	0	0	0	0	0	-0.15	0	-0.16	0

8.2.8 Pressioni sul paramento a monte in combinazione GEO-1

N.	tra	tto di	cal	colo		terr	eno			acc	qua			tot	ale	
	X ₁	Y ₁	X ₂	Y ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂	Vx_1	Vy ₁	V _{x2}	Vy ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂
1	13	260	13	250	0	0	0	0	0	0	0	0	0	0	0	0
2	13	250	13	240	0	0	0	0	0	0	0	0	0	0	0	0
3	13	240	13	230	0	0	0	0	0	0	0	0	0	0	0	0
4	13	230	13	220	0	0	0	0	0	0	0	0	0	0	0	0
5	13	220	13	210	0	0	0	0	0	0	0	0	0	0	0	0
6	13	210	13	200	0	0	0	0	0	0	0	0	0	0	0	0
7	13	200	13	190	0	0	0	0	0	0	0	0	0	0	0	0
8	13	190	13	180	0	0	-0.01	0	0	0	0	0	0	0	-0.01	0
9	13	180	13	170	-0.01	0	-0.01	0	0	0	0	0	-0.01	0	-0.01	0
10	13	170	13	160	-0.01	0	-0.02	0	0	0	0	0	-0.01	0	-0.02	0
11	13	160	13	150	-0.02	0	-0.03	0	0	0	0	0	-0.02	0	-0.03	0
12	13	150	13	140	-0.03	0	-0.04	0	0	0	0	0	-0.03	0	-0.04	0
13	13	140	13	130	-0.04	0	-0.04	0	0	0	0	0	-0.04	0	-0.04	0
14	13	130	13	120	-0.04	0	-0.05	0	0	0	0	0	-0.04	0	-0.05	0
15	13	120	13	110	-0.05	0	-0.06	0	0	0	0	0	-0.05	0	-0.06	0
16	13	110	13	100	-0.06	0	-0.06	0	0	0	0	0	-0.06	0	-0.06	0
17	13	100	13	90	-0.06	0	-0.07	0	0	0	0	0	-0.06	0	-0.07	0
18	13	90	13	80	-0.07	0	-0.08	0	0	0	0	0	-0.07	0	-0.08	0
19	13	80	13	70	-0.08	0	-0.08	0	0	0	0	0	-0.08	0	-0.08	0
20	13	70	13	60	-0.08	0	-0.09	0	0	0	0	0	-0.08	0	-0.09	0
21	13	60	13	50	-0.09	0	-0.1	0	0	0	0	0	-0.09	0	-0.1	0
22	13	50	13	40	-0.1	0	-0.11	0	0	0	0	0	-0.1	0	-0.11	0
23	13	40	13	30	-0.11	0	-0.11	0	0	0	0	0	-0.11	0	-0.11	0
24	13	30	13	20	-0.11	0	-0.12	0	0	0	0	0	-0.11	0	-0.12	0
25	13	20	13	10	-0.12	0	-0.13	0	0	0	0	0	-0.12	0	-0.13	0
26	13	10	13	0	-0.13	0	-0.13	0	0	0	0	0	-0.13	0	-0.13	0

8.2.9 Pressioni sul paramento a monte in combinazione GEO-2

N.	tra	tto di	cal	colo		terr	eno			acc	qua			tot	ale	
	X_1	Y ₁	X_2	Y ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂	Vx_1	Vy ₁	Vx_2	Vy ₂	V _{X1}	Vy ₁	Vx ₂	Vy ₂
1	13	260	13	250	0	0	0	0	0	0	0	0	0	0	0	0
2	13	250	13	240	0	0	0	0	0	0	0	0	0	0	0	0
3	13	240	13	230	0	0	0	0	0	0	0	0	0	0	0	0
4	13	230	13	220	0	0	0	0	0	0	0	0	0	0	0	0
5	13	220	13	210	0	0	-0.01	0	0	0	0	0	0	0	-0.01	0
6	13	210	13	200	-0.01	0	-0.02	0	0	0	0	0	-0.01	0	-0.02	0
7	13	200	13	190	-0.02	0	-0.02	0	0	0	0	0	-0.02	0	-0.02	0
8	13	190	13	180	-0.02	0	-0.03	0	0	0	0	0	-0.02	0	-0.03	0

9	13	180	13	170	-0.03	0	-0.04	0	0	0	0	0	-0.03	0	-0.04	0
10	13	170	13	160	-0.04	0	-0.05	0	0	0	0	0	-0.04	0	-0.05	0
11	13	160	13	150	-0.05	0	-0.05	0	0	0	0	0	-0.05	0	-0.05	0
12	13	150	13	140	-0.05	0	-0.06	0	0	0	0	0	-0.05	0	-0.06	0
13	13	140	13	130	-0.06	0	-0.07	0	0	0	0	0	-0.06	0	-0.07	0
14	13	130	13	120	-0.07	0	-0.07	0	0	0	0	0	-0.07	0	-0.07	0
15	13	120	13	110	-0.07	0	-0.08	0	0	0	0	0	-0.07	0	-0.08	0
16	13	110	13	100	-0.08	0	-0.09	0	0	0	0	0	-0.08	0	-0.09	0
17	13	100	13	90	-0.09	0	-0.09	0	0	0	0	0	-0.09	0	-0.09	0
18	13	90	13	80	-0.09	0	-0.1	0	0	0	0	0	-0.09	0	-0.1	0
19	13	80	13	70	-0.1	0	-0.11	0	0	0	0	0	-0.1	0	-0.11	0
20	13	70	13	60	-0.11	0	-0.12	0	0	0	0	0	-0.11	0	-0.12	0
21	13	60	13	50	-0.12	0	-0.12	0	0	0	0	0	-0.12	0	-0.12	0
22	13	50	13	40	-0.12	0	-0.13	0	0	0	0	0	-0.12	0	-0.13	0
23	13	40	13	30	-0.13	0	-0.14	0	0	0	0	0	-0.13	0	-0.14	0
24	13	30	13	20	-0.14	0	-0.14	0	0	0	0	0	-0.14	0	-0.14	0
25	13	20	13	10	-0.14	0	-0.15	0	0	0	0	0	-0.14	0	-0.15	0
26	13	10	13	0	-0.15	0	-0.16	0	0	0	0	0	-0.15	0	-0.16	0

8.2.10 Pressioni sul paramento a monte in combinazione SIS-1

N.	tra	tto di	cal	colo		terr	eno			acc	qua			tot	ale	
	X_1	Y ₁	X ₂	Y ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂	Vx_1	Vy ₁	V _{x2}	Vy ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂
1	13	260	13	250	0	0	0	0	0	0	0	0	0	0	0	0
2	13	250	13	240	0	0	0	0	0	0	0	0	0	0	0	0
3	13	240	13	230	0	0	0	0	0	0	0	0	0	0	0	0
4	13	230	13	220	0	0	0	0	0	0	0	0	0	0	0	0
5	13	220	13	210	0	0	0	0	0	0	0	0	0	0	0	0
6	13	210	13	200	0	0	0	0	0	0	0	0	0	0	0	0
7	13	200	13	190	0	0	0	0	0	0	0	0	0	0	0	0
8	13	190	13	180	0	0	0	0	0	0	0	0	0	0	0	0
9	13	180	13	170	0	0	0	0	0	0	0	0	0	0	0	0
10	13	170	13	160	0	0	-0.01	0	0	0	0	0	0	0	-0.01	0
11	13	160	13	150	-0.01	0	-0.02	0	0	0	0	0	-0.01	0	-0.02	0
12	13	150	13	140	-0.02	0	-0.02	0	0	0	0	0	-0.02	0	-0.02	0
13	13	140	13	130	-0.02	0	-0.03	0	0	0	0	0	-0.02	0	-0.03	0
14	13	130	13	120	-0.03	0	-0.04	0	0	0	0	0	-0.03	0	-0.04	0
15	13	120	13	110	-0.04	0	-0.04	0	0	0	0	0	-0.04	0	-0.04	0
16	13	110	13	100	-0.04	0	-0.05	0	0	0	0	0	-0.04	0	-0.05	0
17	13	100	13	90	-0.05	0	-0.06	0	0	0	0	0	-0.05	0	-0.06	0
18	13	90	13	80	-0.06	0	-0.06	0	0	0	0	0	-0.06	0	-0.06	0
19	13	80	13	70	-0.06	0	-0.07	0	0	0	0	0	-0.06	0	-0.07	0
20	13	70	13	60	-0.07	0	-0.08	0	0	0	0	0	-0.07	0	-0.08	0
21	13	60	13	50	-0.08	0	-0.08	0	0	0	0	0	-0.08	0	-0.08	0
22	13	50	13	40	-0.08	0	-0.09	0	0	0	0	0	-0.08	0	-0.09	0
23	13	40	13	30	-0.09	0	-0.1	0	0	0	0	0	-0.09	0	-0.1	0
24	13	30	13	20	-0.1	0	-0.1	0	0	0	0	0	-0.1	0	-0.1	0
25	13	20	13	10	-0.1	0	-0.11	0	0	0	0	0	-0.1	0	-0.11	0
26	13	10	13	0	-0.11	0	-0.12	0	0	0	0	0	-0.11	0	-0.12	0

8.2.11 Pressioni sul paramento a monte in combinazione SLE-1

N.	tra	tto di	cal	colo		terr	eno			acc	qua			tot	ale	
	X ₁	Y ₁	X_2	Y_2	Vx_1	Vy_1	Vx_2	Vy ₂	Vx_1	Vy ₁	Vx_2	Vy_2	Vx_1	Vy_1	Vx_2	Vy_2
1	13	260	13	250	0	0	0	0	0	0	0	0	0	0	0	0

2	13	250	13	240	0	0	0	0	0	0	0	0	0	0	0	0
3	13	240	13	230	0	0	0	0	0	0	0	0	0	0	0	0
4	13	230	13	220	0	0	0	0	0	0	0	0	0	0	0	0
5	13	220	13	210	0	0	0	0	0	0	0	0	0	0	0	0
6	13	210	13	200	0	0	0	0	0	0	0	0	0	0	0	0
7	13	200	13	190	0	0	0	0	0	0	0	0	0	0	0	0
8	13	190	13	180	0	0	0	0	0	0	0	0	0	0	0	0
9	13	180	13	170	0	0	0	0	0	0	0	0	0	0	0	0
10	13	170	13	160	0	0	0	0	0	0	0	0	0	0	0	0
11	13	160	13	150	0	0	-0.01	0	0	0	0	0	0	0	-0.01	0
12	13	150	13	140	-0.01	0	-0.01	0	0	0	0	0	-0.01	0	-0.01	0
13	13	140	13	130	-0.01	0	-0.02	0	0	0	0	0	-0.01	0	-0.02	0
14	13	130	13	120	-0.02	0	-0.02	0	0	0	0	0	-0.02	0	-0.02	0
15	13	120	13	110	-0.02	0	-0.03	0	0	0	0	0	-0.02	0	-0.03	0
16	13	110	13	100	-0.03	0	-0.04	0	0	0	0	0	-0.03	0	-0.04	0
17	13	100	13	90	-0.04	0	-0.04	0	0	0	0	0	-0.04	0	-0.04	0
18	13	90	13	80	-0.04	0	-0.05	0	0	0	0	0	-0.04	0	-0.05	0
19	13	80	13	70	-0.05	0	-0.05	0	0	0	0	0	-0.05	0	-0.05	0
20	13	70	13	60	-0.05	0	-0.06	0	0	0	0	0	-0.05	0	-0.06	0
21	13	60	13	50	-0.06	0	-0.06	0	0	0	0	0	-0.06	0	-0.06	0
22	13	50	13	40	-0.06	0	-0.07	0	0	0	0	0	-0.06	0	-0.07	0
23	13	40	13	30	-0.07	0	-0.07	0	0	0	0	0	-0.07	0	-0.07	0
24	13	30	13	20	-0.07	0	-0.08	0	0	0	0	0	-0.07	0	-0.08	0
25	13	20	13	10	-0.08	0	-0.09	0	0	0	0	0	-0.08	0	-0.09	0
26	13	10	13	0	-0.09	0	-0.09	0	0	0	0	0	-0.09	0	-0.09	0

8.2.12 Pressioni sul paramento a monte in combinazione SLE-2

N.	tra	tto di	cal	colo		terr	eno			acc	qua			tot	ale	
	X ₁	Y ₁	X ₂	Y ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂	Vx ₁	Vy ₁	Vx2	Vy ₂	Vx ₁	Vy ₁	Vx ₂	Vy ₂
1	13	260	13	250	0	0	0	0	0	0	0	0	0	0	0	0
2	13	250	13	240	0	0	0	0	0	0	0	0	0	0	0	0
3	13	240	13	230	0	0	0	0	0	0	0	0	0	0	0	0
4	13	230	13	220	0	0	0	0	0	0	0	0	0	0	0	0
5	13	220	13	210	0	0	0	0	0	0	0	0	0	0	0	0
6	13	210	13	200	0	0	0	0	0	0	0	0	0	0	0	0
7	13	200	13	190	0	0	0	0	0	0	0	0	0	0	0	0
8	13	190	13	180	0	0	0	0	0	0	0	0	0	0	0	0
9	13	180	13	170	0	0	0	0	0	0	0	0	0	0	0	0
10	13	170	13	160	0	0	-0.01	0	0	0	0	0	0	0	-0.01	0
11	13	160	13	150	-0.01	0	-0.01	0	0	0	0	0	-0.01	0	-0.01	0
12	13	150	13	140	-0.01	0	-0.02	0	0	0	0	0	-0.01	0	-0.02	0
13	13	140	13	130	-0.02	0	-0.02	0	0	0	0	0	-0.02	0	-0.02	0
14	13	130	13	120	-0.02	0	-0.03	0	0	0	0	0	-0.02	0	-0.03	0
15	13	120	13	110	-0.03	0	-0.03	0	0	0	0	0	-0.03	0	-0.03	0
16	13	110	13	100	-0.03	0	-0.04	0	0	0	0	0	-0.03	0	-0.04	0
17	13	100	13	90	-0.04	0	-0.05	0	0	0	0	0	-0.04	0	-0.05	0
18	13	90	13	80	-0.05	0	-0.05	0	0	0	0	0	-0.05	0	-0.05	0
19	13	80	13	70	-0.05	0	-0.06	0	0	0	0	0	-0.05	0	-0.06	0
20	13	70	13	60	-0.06	0	-0.06	0	0	0	0	0	-0.06	0	-0.06	0
21	13	60	13	50	-0.06	0	-0.07	0	0	0	0	0	-0.06	0	-0.07	0
22	13	50	13	40	-0.07	0	-0.07	0	0	0	0	0	-0.07	0	-0.07	0
23	13	40	13	30	-0.07	0	-0.08	0	0	0	0	0	-0.07	0	-0.08	0
24	13	30	13	20	-0.08	0	-0.08	0	0	0	0	0	-0.08	0	-0.08	0
25	13	20	13	10	-0.08	0	-0.09	0	0	0	0	0	-0.08	0	-0.09	0
26	13	10	13	0	-0.09	0	-0.1	0	0	0	0	0	-0.09	0	-0.1	0

9 Risultante delle azioni agenti sul muro

Vengono riportate le combinazioni di calcolo ed il riepilogo delle azioni risultanti agenti sul muro per le verifiche geotecniche.

9.1 Combinazioni di calcolo

La seguente tabella mostra i coefficienti moltiplicatori delle azioni utilizzati nelle combinazioni ed i relativi gruppi di coefficienti di sicurezza parziale, definiti nella normativa.

Con l'indice stampato n uguale a 0 (A0, M0 e R0), si intendono le situazioni in cui non sono definiti dei gruppi specifici da parte della normativa ed i coefficienti moltiplicatori sono da intendersi implicitamente unitari.

Famiglia	Α	М	R	Indice	Nome	Perm.	Variabili	Sisma H	Sisma V
EQU	А3	M1	R3	1	EQU-1	0.9	1.5	0	0
EQU	А3	M1	R3	2	EQU-2	1.1	1.5	0	0
EQU	A0	M0	Rs	3	EQU-3	1	0.3	1	0
STR	A1	M1	R3	1	STR-1	1	0	0	0
STR	A1	M1	R3	2	STR-2	1	1.5	0	0
STR	A1	M1	R3	3	STR-3	1.3	0	0	0
STR	A1	M1	R3	4	STR-4	1.3	1.5	0	0
GEO	A2	M2	R2	1	GEO-1	1	0	0	0
GEO	A2	M2	R2	2	GEO-2	1	1.3	0	0
SIS	A0	M0	Rs	1	SIS-1	1	0.3	1	0
SLE	A0	M0	R0	1	SLE-1	1	0	0	0
SLE	A0	M0	R0	2	SLE-2	1	0.3	0	0

9.1.1 Combinazione di carico EQU-1

Descrizione	Χp	У р	F _x	Fγ
	cm	cm	daN/cm	daN/cm
Peso proprio del muro	17	50	0	-30.38
Peso proprio del terreno/acqua a monte	58	130	0	-40.01
Spinta del terreno a monte	0	32	-15.27	0
Spinta del terreno a valle	0	-28	7.4	0
Carichi applicati al muro	-12	0	0	-7.72
Carichi su terreno a monte	58	0	0	-6.75

9.1.2 Combinazione di carico EQU-2

Descrizione	Χp	у р	F _x	Fy
	cm	cm	daN/cm	daN/cm
Peso proprio del muro	17	50	0	-37.13
Peso proprio del terreno/acqua a monte	58	130	0	-48.91
Spinta del terreno a monte	0	36	-20.47	0
Spinta del terreno a valle	0	-28	7.91	0
Carichi applicati al muro	-12	0	0	-9.44
Carichi su terreno a monte	58	0	0	-6.75

9.1.3 Combinazione di carico EQU-3

Descrizione	Χp	У р	Fx	Fy
	cm	cm	daN/cm	daN/cm
Peso proprio del muro	17	50	0	-33.75
Peso proprio del terreno/acqua a monte	58	130	0	-44.46
Spinta del terreno a monte	0	24	-17.96	0
Spinta del terreno a valle	0	-28	7.66	0
Carichi applicati al muro	-12	126	-0.91	-8.58
Carichi su terreno a monte	58	0	0	-1.35

Forza di inerzia dovuta al muro	17	50	-3.56	0
Forza di inerzia dovuta al terreno/acqua a monte	58	130	-4.69	0

9.1.4 Combinazione di carico STR-1

Descrizione	Χp	У р	F _x	Fγ
	cm	cm	daN/cm	daN/cm
Peso proprio del muro	17	50	0	-33.75
Peso proprio del terreno/acqua a monte	58	130	0	-44.46
Spinta del terreno a monte	0	21	-12.71	0
Spinta del terreno a valle	0	-28	7.66	0
Carichi applicati al muro	-12	0	0	-8.58

9.1.5 Combinazione di carico STR-2

Descrizione	Χp	У р	Fx	Fy
	cm	cm	daN/cm	daN/cm
Peso proprio del muro	17	50	0	-33.75
Peso proprio del terreno/acqua a monte	58	130	0	-44.46
Spinta del terreno a monte	0	34	-17.86	0
Spinta del terreno a valle	0	-28	7.66	0
Carichi applicati al muro	-12	0	0	-8.58
Carichi su terreno a monte	58	0	0	-6.75

9.1.6 Combinazione di carico STR-3

Descrizione	Χp	У р	F _x	Fy
	cm	cm	daN/cm	daN/cm
Peso proprio del muro	17	50	0	-43.88
Peso proprio del terreno/acqua a monte	58	130	0	-57.8
Spinta del terreno a monte	0	28	-20.18	0
Spinta del terreno a valle	0	-29	8.41	0
Carichi applicati al muro	-12	0	0	-11.15

9.1.7 Combinazione di carico STR-4

Descrizione	Χp	У р	F _x	F _ν
	cm	cm	daN/cm	daN/cm
Peso proprio del muro	17	50	0	-43.88
Peso proprio del terreno/acqua a monte	58	130	0	-57.8
Spinta del terreno a monte	0	39	-25.72	0
Spinta del terreno a valle	0	-29	8.41	0
Carichi applicati al muro	-12	0	0	-11.15
Carichi su terreno a monte	58	0	0	-6.75

9.1.8 Combinazione di carico SIS-1

Descrizione	Χp	У р	Fx	Fy
	cm	cm	daN/cm	daN/cm
Peso proprio del muro	17	50	0	-33.75
Peso proprio del terreno/acqua a monte	58	130	0	-44.46
Spinta del terreno a monte	0	24	-16.43	0
Spinta del terreno a valle	0	-28	7.66	0
Carichi applicati al muro	-12	126	-0.6	-8.58
Carichi su terreno a monte	58	0	0	-1.35
Forza di inerzia dovuta al muro	17	50	-2.38	0
Forza di inerzia dovuta al terreno/acqua a monte	58	130	-3.13	0

10 Verifiche di stabilità locale

10.1 Tensioni trasmesse sul terreno

Moltiplicatore spinta passiva per equilibrio : 1
Pressione limite sul terreno per abbassamento : 2 daN/cm²
Eccentricità rispetto al baricentro della fondazione : 19.4 cm (comb. SIS-1)
Momento rispetto al baricentro della fondazione : 1714 daN cm (comb. SIS-1)
Larghezza reagente minima in fondazione : 140 cm (comb. STR-1)
Tensione max sul terreno allo spigolo di valle : 1.37 daN/cmq (comb. STR-4)
Tensione max sul terreno allo spigolo di monte : 0.46 daN/cmq (comb. STR-1)

10.2 Verifica allo scorrimento sul piano di posa

: SIS-1 Combinazione che ha prodotto il valore peggiore Verifica peggiore per condizione : LT (lungo termine) Moltiplicatore spinta passiva per traslazione Coefficiente di attrito caratteristico terreno-fondazione : 0.65 Coefficiente di attrito di progetto terreno-fondazione : 0.65 Sforzo normale sul piano di posa della fondazione : 88 daN Sforzo tangenziale positivo all'intradosso della fondazione : 0 daN Sforzo tangenziale negativo all'intradosso della fondazione : 23 daN Coefficiente parziale gammaR scorrimento Coefficiente limite verifica alla traslazione Coefficiente di sicurezza alla traslazione : 2.54

10.3 Verifica a ribaltamento

Combinazione che ha prodotto il valore peggiore : EQU-3

Moltiplicatore spinta passiva per ribaltamento : 0

Momento ribaltante rispetto allo spigolo di valle : 2523 daN cm

Momento stabilizzante rispetto a spigolo di valle : -6246 daN cm

Coefficiente parziale gammaR ribaltamento : 1

Coefficiente limite verifica al ribaltamento : 1

Coefficiente di sicurezza al ribaltamento : 2.48

10.4 Verifica di collasso per carico limite del complesso fondazione-terreno

Combinazione che ha prodotto il valore peggiore : STR-4 Verifica peggiore per condizione : LT (lungo termine) Moltiplicatore spinta passiva per portanza terreno : 0 : 29 ° Inclinazione media del pendio circostante la fondazione Profondità del piano di posa : 49 cm Sovraccarico agente sul piano di posa : 0.121 daN/cm2 Coesione di progetto del suolo di fondazione : 0.05 daN/cm2 Angolo di attrito di progetto del suolo di fondazione : 33 ° : 0.0019 daN/cm3 Peso specifico di progetto del suolo di fondazione Inclinazione della risultante rispetto alla normale : 12.1 ° Base efficace : 109 cm : 25.7 daN/cm Carico tangenziale al piano di posa Carico di progetto della fondazione (normale al P.P.) : 119.6 daN/cm Carico ultimo della fondazione : 170.6 daN/cm Lunghezza Fondazione per verifica carico limite : 1000 cm Coefficiente parziale gammaR carico limite : 1.4 Coefficiente limite verifica al carico limite : 1 Coefficiente di sicurezza al carico limite : 1.02

Tabella dei coefficienti di capacità portante

Coefficienti	Coesione	Sovraccarico	Attrito
Coefficienti di capacità portante	N _c = 39	N _q = 26	Ng= 24
Coefficienti di forma	s _c = 1	s _q = 1	s _g = 1
Coefficienti di profondità	d _c = 1.14	d _q = 1.09	d _g = 1
Coefficienti di inclinazione del carico	i _c = 0.55	$i_q = 0.57$	$i_{g} = 0.44$

Coefficienti di inclinazione del piano di posa della fondazione	b _c = 1	b _q = 1	$b_g = 1$
Coefficienti di inclinazione del pendio	$g_c = 0.8$	$g_q = 0.19$	$g_g = 0.19$

11 Verifica di stabilità globale dell'opera sul pendio

Combinazione che ha prodotto il valore peggiore : GEO-2 Coefficiente limite suggerito dalla normativa : 1.1 Coefficiente di stabilità globale pendio : 1.11

Metodo di analisi di stabilità del pendio : Bishop Passo dei conci : 100 cm : -357 cm X centro della superficie critica Y centro della superficie critica : 508 cm : 723 cm Raggio della superficie critica : 1.56 daN/cm Forza di bilancio Volume spostato dalla superficie critica : $11.56 \text{ m}^3/\text{m}$: 22765 daN/m Peso spostato dalla superficie critica

STABILITA' DEL PENDIO CON IL METODO DI BISHOP Combinazione $\ensuremath{\mathsf{GEO}}-1$

Concio	alfa	1	С	Tgfi	Xg	Yg	b	Peso	Pvert	Ptot	Press	Mstab	Minst
1	-1.4	82	0.04	0.52	-361	-198	4	4	0	4	0	3804	-64
2	5.8	99	0.04	0.52	-279	-173	78	13	0	13	0	7516	966
3	13.8	102	0.04	0.52	-183	-137	174	20	0	20	0	9756	3501
4	22	106	0.04	0.52	-86	-94	271	25	0	25	0	11107	6694
5	27.4	28	0.04	0.52	-25	-63	332	7	0	7	0	3113	2364
6	29.6	29	0.04	0.52	0	77	357	23	0	23	0	8517	8118
7	35.1	110	0.04	0.52	56	84	413	61	0	61	0	23863	25425
8	45.1	141	0.04	0.52	149	128	507	49	0	49	0	21039	25262
9	58.2	190	0.04	0.52	242	187	599	25	0	25	0	13432	15086
10	67.8	53	0.04	0.52	309	244	666	1	0	1	0	1523	616
		940						228	0	228		103669	87967

Coefficiente di sicurezza FS = 1.18

STABILITA' DEL PENDIO CON IL METODO DI BISHOP Combinazione GEO-2

Concio	alfa	1	С	Tgfi	Xg	Yg	b	Peso	Pvert	Ptot	Press	Mstab	Minst
1	-1.4	82	0.04	0.52	-361	-198	4	4	0	4	0	3806	-64
2	5.8	99	0.04	0.52	-279	-173	78	13	0	13	0	7497	966
3	13.8	102	0.04	0.52	-183	-137	174	20	0	20	0	9700	3501
4	22	106	0.04	0.52	-86	-94	271	25	0	25	0	11008	6694
5	27.4	28	0.04	0.52	-25	-63	332	7	0	7	0	3080	2364
6	29.6	29	0.04	0.52	0	77	357	23	0	23	0	8418	8118
7	35.1	110	0.04	0.52	56	84	413	61	6	67	0	25556	27858
8	45.1	141	0.04	0.52	149	128	507	49	6	56	0	23017	28587
9	58.2	190	0.04	0.52	242	187	599	25	6	31	0	15750	19078
10	67.8	53	0.04	0.52	309	244	666	1	1	2	0	1735	1481
		940						228	20	248		109566	98581

Coefficiente di sicurezza FS = 1.11

STABILITA' DEL PENDIO CON IL METODO DI BISHOP Combinazione SIS-1

Concio	alfa	1	С	Tgfi	Xg	Yg	b	Peso	Pvert	Ptot	Press	Mstab	Minst
1	-1.4	82	0.05	0.65	-361	-198	4	4	0	4	0	4759	53
2	5.8	99	0.05	0.65	-279	-173	78	13	0	13	0	9361	1365
3	13.8	102	0.05	0.65	-183	-137	174	20	0	20	0	12093	4085
4	22	106	0.05	0.65	-86	-94	271	25	0	25	0	13705	7355
5	27.4	28	0.05	0.65	-25	-63	332	7	0	7	0	3831	2544
6	29.6	29	0.05	0.65	0	77	357	23	0	23	0	10467	8554

7	35.1	110	0.05	0.65	56	84	413	61	1	62	0	29815	27166
8	45.1	141	0.05	0.65	149	128	507	49	1	51	0	26298	26888
9	58.2	190	0.05	0.65	242	187	599	25	1	26	0	16965	16380
10	67.8	53	0.05	0.65	309	244	666	1	0	1	0	1903	830
		940						228	5	232		129197	95218

Coefficiente di sicurezza FS = 1.36

12 Parametri per dimensionamento armatura

Metodo di calcolo : D.M. 17-01-18 Norme Tecniche per le Costruzioni

Rck (resistenza caratteristica cubica del calcestruzzo) : 350 daN/cmq
Modulo elastico longitudinale Ec : 325881 daN/cmq

Rapporto Ea/Ec per calcolo tensioni in esercizio : 15
Rapporto Ea/Ec per calcolo ampiezza fessure : 7

Fyk (tensione di snervamento caratteristica dell'acciaio): 4500 daN/cmq

Fattore parziale di sicurezza dell'acciaio : 1.15 Fattore parziale di sicurezza del calcestruzzo : 0.7 Riduzione della tau di aderenza per cattiva aderenza : 0.45 Limite sigmac/fck Limite sigmaf/fyk : 0.8 Ampiezza limite delle fessure : 0.3 mm Coefficiente Beta2 per calcolo ampiezza fessure : 0.5 Coefficiente Beta per punzonamento pali interni : 1.15 Coefficiente Beta per punzonamento pali sul bordo : 1.4 Coefficiente Beta per punzonamento pali sull'angolo : 1.5

13 Sollecitazioni e verifiche strutturali

Tutte le verifiche sono riferite su sezioni di profondità nominale di un metro.

Verifiche sismiche condotte in campo sostanzialmente elastico

EpsS% max : 0.186 % EpsC% max : 0.2 %

Significato dei simboli:

X: ascissa del baricentro della sezione

Y: ordinata del baricentro della sezione

H: altezza della sezione

As: area efficace dello strato superiore per metro

Cs: copriferro medio dello strato superiore

Ai: area efficace dello strato inferiore per metro

Ci: copriferro medio dello strato inferiore

v_{ml}: soddisfacimento delle percentuali minime di armatura

c_{res}: combinazione di carico critica per la verifica di resistenza in pressoflessione retta

M_d: momento di calcolo

N_d: sforzo normale di calcolo

Mu: momento ultimo

Nu: sforzo normale ultimo

c.s.: coefficiente di sicurezza

v_{res}: soddisfacimento della resistenza alla pressoflessione retta

X: ascissa del baricentro della sezione

Y: ordinata del baricentro della sezione

H: altezza della sezione

ces: combinazione di carico critica delle tensioni in esercizio in pressoflessione retta

Me: momento in esercizio

N_e: sforzo normale in esercizio

σ_f: trazione massima sull'armatura

σ_c: compressione massima sul calcestruzzo

ves: soddisfacimento tensioni ammissibili a pressoflessione retta

cf: combinazione di carico critica per la verifica di fessurazione

 M_{f} : momento di calcolo per la verifica di fessurazione N_{f} : sforzo normale di calcolo per la verifica di fessurazione

Srm: interasse delle fessure

W_k: ampiezza caratteristica delle fessure v_f: soddisfacimento verifica fessurazione X: ascissa del baricentro della sezione Y: ordinata del baricentro della sezione

H: altezza della sezione

ci: combinazione di carico critica per la verifica a taglio

VSd: taglio di calcolo

VRdc: taglio resistente in assenza di armatura a taglio

VRdmax: taglio resistente massimo dell'elemento, limitato dalla rottura delle bielle compresse

VRds: taglio resistente in presenza di armatura a taglio

vt: soddisfacimento verifica taglio

Paramento (sezioni longitudinali) (attraversate da barre trasversali)

Χ	Υ	Н	As	Cs	A_i	Ci	v_{ml}	Cres	M_d	N_d	Mu	N_u	C.S.	V_{res}
cm	cm	cm	cm ²	cm	cm ²	cm			daN cm	daN		daN cm		
0	0	25	5.7	6.5	5.7	6.5	ok	STR-4	135537	-3228	457479	3651	3.37	ok
0	30	25	8.3	6.5	8.3	6.5	ok	STR-4	89902	-2855	862882	-27407	9.6	ok
0	60	25	3.9	6.5	3.9	6.5	no	STR-4	56428	-2483	613790	-27007	10.9	ok
0	90	25	3.9	6.5	3.9	6.5	no	STR-4	33149	-2111	800366	-50958	24.1	ok
0	120	25	3.9	6.5	3.9	6.5	no	STR-4	18100	-1738	1233057	-118407	68.1	ok
0	150	25	3.9	6.5	3.9	6.5	no	STR-4	9314	-1366	1415876	-207603	152	ok
0	180	25	3.9	6.5	3.9	6.5	no	SIS-1	5331	-764	1361118	-195075	255	ok
0	210	25	3.9	6.5	3.9	6.5	no	STR-4	2668	-621	1237231	-287896	464	ok
0	240	25	3	6.5	3	6.5	no	STR-3	1069	-248	1221233	-283603	>999	ok

Х	Υ	Н	C _{es}	M _e	N _e	σ_{f}	σ_{c}	Ves	Cf	M_{f}	N_{f}	Srm	W_k	V_{f}
cm	cm	cm		daN cm	daN	daN/cm ²	daN/cm ²			daN cm	daN	cm	mm	
0	0	25	SLE-2	56984	-2483	344	-13	ok	SLE-2	56984	-2483	•	١	ok
0	30	25	SLE-2	35333	-2197	116	-7	ok	SLE-2	35333	-2197	•	١	ok
0	60	25	SLE-2	20777	-1910	56	-4	ok	SLE-2	20777	-1910	•	-	ok
0	90	25	SLE-2	11803	-1624	5	-2	ok	SLE-2	11803	-1624	•	١	ok
0	120	25	SLE-2	6899	-1337	0	-1	ok	SLE-2	6899	-1337	•	١	ok
0	150	25	SLE-2	4552	-1051	0	-1	ok	SLE-2	4552	-1051	•	١	ok
0	180	25	SLE-1	3259	-764	0	-1	ok	SLE-1	3259	-764	-	-	ok
0	210	25	SLE-1	2047	-478	0	0	ok	SLE-1	2047	-478	-	-	ok
0	240	25	SLE-1	822	-191	0	0	ok	SLE-1	822	-191	-	-	ok

Χ	Υ	Ι	Ct	VSd	VRdc	VRdmax	VRds	v_t
cm	cm	cm		daN	daN	daN	daN	
0	0	25	STR-4	-1696	10229	1	-	ok
0	30	25	STR-4	-1258	10756	1	-	ok
0	60	25	STR-4	-885	10147	1	-	ok
0	90	25	STR-4	-577	10105	1	-	ok
0	120	25	STR-4	-335	10064	1	-	ok
0	150	25	STR-4	-159	10023	1	-	ok
0	180	25	SIS-1	-54	9956	1	-	ok
0	210	25	SIS-1	-34	9924	-	-	ok
0	240	25	SIS-1	-13	9892	-	-	ok

Mensola di fondazione a valle (mensola sinistra) (sezioni longitudinali) (attraversate da barre trasversali)

	X	Υ	Н	A_s	Cs	A_{i}	Ö	v_{ml}	Cres	M_d	N_d	M_{u}	N_u	C.S.	V_{res}
С	m	cm	cm	cm ²	cm	cm ²	cm			daN cm	daN		daN cm		
-	13	-25	50	3.9	6.5	3.9	6.5	no	STR-4	32555	-841	1598218	-41282	49.1	ok

Χ	Υ	Ι	Ces	M_e	N_{e}	σ_{f}	σ_{c}	v_{es}	Cf	M_{f}	N_f	Srm	W_k	V_{f}
cm	cm	cm		daN cm	daN	daN/cm ²	daN/cm ²			daN cm	daN	cm	mm	
-13	-25	50	SLE-2	18398	-766	24	-1	ok	SLE-2	18398	-766	-	-	ok

Х	Υ	Η	Ct	VSd	VRdc	VRdmax	VRds	Vt
cm	cm	cm		daN	daN	daN	daN	
-13	-25	50	STR-4	2778	17948	-	-	ok

Mensola di fondazione a monte (mensola destra) (sezioni longitudinali) (attraversate da barre trasversali)

Χ	Υ	Н	As	Cs	Ai	Ci	V _{ml}	Cres	M_d	N_d	M_u	N_u	C.S.	V _{res}
cm	cm	cm	cm ²	cm	cm ²	cm			daN cm	daN		daN cm		
13	-25	50	3.9	6.5	3.9	6.5	no	SIS-1	-123935	-739	-733519	-4372	5.92	ok
43	-25	50	3.9	6.5	3.9	6.5	no	SIS-1	-68965	-712	-820877	-8477	11.9	ok
73	-25	50	3.9	6.5	3.9	6.5	no	SIS-1	-21140	-686	-1825323	-59217	86.3	ok

Χ	Υ	Н	Ces	Me	Ne	$\sigma_{\rm f}$	σ_{c}	Ves	Cf	M _f	N_{f}	Srm	W_k	Vf
cm	cm	cm		daN cm	daN	daN/cm ²	daN/cm ²			daN cm	daN	cm	mm	
13	-25	50	SLE-2	-45245	-549	207	-3	ok	SLE-2	-45245	-549	-	-	ok
43	-25	50	SLE-2	-25196	-549	85	-2	ok	SLE-2	-25196	-549	-	-	ok
73	-25	50	SLE-2	-7927	-549	2	0	ok	SLE-2	-7927	-549	-	-	ok

Χ	Υ	Н	Ct	VSd	VRdc	VRdmax	VRds	Vt
cm	cm	cm		daN	daN	daN	daN	
13	-25	50	STR-4	-1873	17952	-	ı	ok
43	-25	50	STR-4	-1905	17952	-	-	ok
73	-25	50	STR-4	-1281	17952	-	-	ok

Il progettista

Ing. Marco SONTACCHI

dott. ing. MARCO SONTACCHI

Cavalese, agosto 2025