

PROVINCIA AUTONOMA DI TRENTO AGENZIA PROVINCIALE OPERE PUBBLICHE SERVIZIO OPERE CIVILI

UFFICIO PROGETTAZIONE E DIREZIONE LAVORI

COMUNE DI TESERO

LAVORI PUBBLICI E AMBIENTE

Lavori di adeguamento dello stadio del fondo a Lago di Tesero UF1

FASE PROGETTO:

PROGETTO DEFINITIVO

CATEGORIA:

IMPIANTI

TITOLO TAVOLA :

NUOVO EDIFICIO INTERRATO - RELAZIONE TECNICA RELATIVA AI REQUISITI ENERGETICI AI SENSI DEL D.LGS 192/2005

C. SIP: E-90/000	c. soc: 5360	SCALA:	FASE PROGETTO:	TIPO ELAB.:	CATEGORIA:	PARTE D'OPERA : UF1A	n° progr. 201	REVISIONE:	
PROGETTO ARCI	HITETTONICO:		PROGETTO STRU	JTTURE e ANTINCEN	DIO:	Visto ! IL DIRIGENTE:			
arch. Ma	arco GIOVAI	VAZZI	ing. Mar	co SONTAC	CHI	ing. Marc	ing. Marco GELMINI		
PROGETTO IMPIANTI ELETTRICI:			PROGETTO IMPIANTI TERMOMECCANICI: Visto ! IL DIRETTORE DELL			ORE DELL'UFFICIO :			
ing. Ren	ato COSER		ing. Giovanni BETTI		arch. Silvano TOMASELLI				
						IL COORDINATORE DEL GRUPPO DI PROGETTO:			
						ing. Gabriele DEVIGILI			
CSP:			RELAZIONE GEOL	OGICA:		RELAZIONE ACUSTICA:			
ing. Piero MATTIOLI			geol. Mir	ko DEMOZZ	ZI	ing. Matteo AGOSTINI			
NOME FILE: 5360-DR110-201			1			DATA REDAZIONE :	LUGLI	O 2022	

RELAZIONE TECNICA DI CUI AL COMMA 1 DELL'ARTICOLO 8 DEL DECRETO LEGISLATIVO 19 AGOSTO 2005, N. 192, ATTESTANTE LA RISPONDENZA ALLE PRESCRIZIONI IN MATERIA DI CONTENIMENTO DEL CONSUMO ENERGETICO DEGLI EDIFICI

Nuove costruzioni, ristrutturazioni importanti di primo livello, edifici ad energia quasi zero

Un edificio esistente è sottoposto a ristrutturazione importante di primo livello quando l'intervento ricade nelle tipologie indicate al paragrafo 1.4.1, comma 3, lettera a) dell'Allegato 1 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005.

La seguente relazione tecnica contiene le informazioni minime necessarie per accertare l'osservanza delle norme vigenti da parte degli organismi pubblici competenti. Lo schema di relazione tecnica si riferisce ad un'applicazione integrale del decreto legislativo 192/2005.

1. INFORMAZIONI GENERALI

Comune di <i>Tesero</i>		Provincia di <i>Trento</i>
Progetto per la realizzazione di (specifio Centro Fondo Tesero - Nuovo interrato	care il tipo di o _l	pere)
Edificio pubblico	☑ sì	□ no
Edificio a uso pubblico	☑ sì	□ no
Sito in (specificare l'ubicazione o, in alternativa indic loc. Lago di Tesero /, 38038 Tesero (TN)		re nel terreno di cui si riportano gli estremi del censimento al Nuovo Catasto Urbano)
Richiesta Permesso di Costruire		n del
, , , ,	el decreto legis	in base alla categoria di cui al punto 1.2 dell'allegato 1 del slativo 192/2005; per edifici costituiti da parti appartenenti a
Zona termica		Classificazione
Corpo A - Zona lounge e spogliatoi		E.6 (3)-Edificio adibito a servizio di supporto alle attività sportive

Numero delle unità immobiliari: 1

Committente(i): Comune di Tesero

Corpo A - Zona laboratori ski room

2. FATTORI TIPOLOGICI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI)

Gli elementi tipologici da fornire, al solo scopo di supportare la presente relazione tecnica, sono i primi tre allegati obbligatori di cui al punto 8 della presente relazione.

sportive

E.6 (3)-Edificio adibito a servizio di supporto alle attività

3. PARAMETRI CLIMATICI DELLA LOCALITÀ

Gradi giorno (della zona d'insediamento, determinati in base al DPR 412/93)	4028 GG
Temperatura minima di progetto (dell'aria esterna secondo norma UNI 5364 e successivi aggiornamenti)	-19,1 °C
Temperatura massima estiva di progetto dell'aria esterna secondo norma	28,7 °C

4. DATI TECNICI E COSTRUTTIVI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI) E DELLE RELATIVE STRUTTURE

Climatizzazione invernale

Volume delle parti di edificio abitabili al lordo delle strutture che li delimita	no (V)		6 779	,88 m³
Superficie disperdente che delimita il volume riscaldato (S)			3 524	,90 m²
Rapporto S/V			0,52	2 m ⁻¹
Superficie utile climatizzata dell'edificio			1 164	,07 m²
Valore di progetto della temperatura interna invernale				
Corpo A - Zona lounge e spogliatoi			20,	0 °C
Corpo A - Zona laboratori ski room			20,	0 °C
Valore di progetto dell'umidità relativa interna invernale			50,	0 %
Presenza sistema di contabilizzazione del calore				
(indiretta)	☑ sì	□ no		
Climatizzazione estiva				
Volume delle parti di edificio abitabili al lordo delle strutture che li delimitar	no (V)		0,0	0 m³
Superficie disperdente che delimita il volume condizionato (S)			0,0	0 m²
Superficie utile climatizzata dell'edificio			0,0	0 m²
Valore di progetto della temperatura interna estiva				
Corpo A - Zona lounge e spogliatoi			26,	0 °C
Corpo A - Zona laboratori ski room			26,	0 °C
Valore di progetto dell'umidità relativa interna estiva			50) %
Presenza sistema di contabilizzazione del freddo			□sì	☑ no
Informazioni generali e prescrizioni	_	_		
Presenza di reti di teleriscaldamento/raffreddamento a meno di 1000 m	□sì		no	
Livello di automazione per il controllo la regolazione e la gestione delle tecn (BACS), classe: <i>B</i> (min = classe B norma UNI EN 15232)	nologie dell'ed	ificio e	degli impia	nti termici
Adozione di materiali ad elevata riflettanza solare per le coperture Se "no" riportare le ragioni tecnico-economiche che hanno portato al non utilizzo de L'edificio è ipogeo e non è interessato se non marginalmente da irra			no	
Adozione di tecnologie di climatizzazione passiva per le coperture Se "no" riportare le ragioni tecnico-economiche che hanno portato al non utilizzo: L'edificio è ipogeo e non è interessato se non marginalmente da irra	□ sì ggiamento so	☑ lare.	no	
Adozione di misuratori d'energia (Energy Meter)	□sì		no	
Adozione di sistemi di contabilizzazione diretta del calore	□ sì	$\overline{\checkmark}$		
Adozione di sistemi di contabilizzazione diretta del freddo	□sì	$\overline{\checkmark}$		
Adozione di sistemi di contabilizzazione diretta dell'A.C.S. Se "no" riportare le ragioni tecnico-economiche che hanno portato al non utilizzo	☐ Sì e definire quale	☑ sistema d		zione è stato

Se "no" riportare le ragioni tecnico-economiche che hanno portato al non utilizzo e definire quale sistema di contabilizzazione è stato utilizzato:

Utilizzazione di fonti di energia rinnovabili per la copertura dei consumi di calore, di elettricità e per il raffrescamento secondo i principi minimi di integrazione, le modalità e le decorrenze di cui all'allegato 3, del decreto legislativo 3 marzo 2011, n. 28.

Produzione di energia termica

Indicare la % di copertura tramite il ricorso ad energia prodotta da impianti alimentati da fonti rinnovabili, dei consumi previsti per:

- acqua calda sanitaria (%): 3,20
- acqua calda sanitaria, climatizzazione invernale, climatizzazione estiva (%): 1,33

Produzione di energia elettrica

Indicare la potenza elettrica degli impianti alimentati da fonti rinnovabili:

- superficie in pianta dell'edificio a livello del terreno S (mq): 1 650,00
- potenza elettrica (kW): 0,00

Descrizione e potenza degli impianti alimentati da fonti rinnovabili:

Non previsti in considerazione del profilo di utilizzo della struttura.

dotato di vetrocamera con fattore solare non superiore a g=0,30.

Adozione sistemi di regolazione automatica della temperatura ambiente singoli impianti di climatizzazione invernale	locali o nelle z ✓ sì	one termiche servite da
Adozione sistemi di compensazione climatica nella regolazione automatica della nelle zone termiche servite da impianti di climatizzazione invernale	a temperatura Sì	ambiente singoli locali o □ no
Valutazione sull'efficacia dei sistemi schermanti delle superfici vetrate sia esteri L'edificio è ipogeo e non è interessato se non marginalmente da irraggiamenti		

5. DATI RELATIVI AGLI IMPIANTI

5.1 <u>Impianti termici</u>

Impianto tecnologico destinato ai servizi di climatizzazione invernale e/o estiva e/o produzione di acqua calda sanitaria, indipendentemente dal vettore energetico utilizzato.

a) Descrizione impianto

Centrale termica

- Sottocentrale termica

In apposito locale interrato sarà ricavato un locale tecnico nel quale saranno installate la nuova sottocentrale e le unità di trattamento aria. Sarà ivi installato un collettore di distribuzione dal quale si dipartiranno i circuiti idronici delle varie utenze, come da schema funzionale di progetto.

Sarà presente una pompa primaria che convoglierà il fluido caldo prelevato dalla centrale termica. Si prevede un sistema di regolazione della portata spillata dalla centrale termica tramite controllo della temperatura di ritorno agente direttamente sui giri della pompa, che consente il prelievo esclusivamente della portata strettamente necessaria al trasferimento della potenza termica istantanea richesta.

Nella sottocentrale saranno installati tre termoaccumuli da 2.000 litri ciascuno, necessari per accumulare l'energia termica necessaria a far fronte al picco di richiesta di acqua calda sanitaria derivante dall'utilizzo contemporaneo delle 20 docce presenti.

La produzione dell'acqua calda sarà istantanea per mezzo di tre scambiatori di calore, ciascuno collegato tramite circuito primario al proprio termoaccumulo. I termoaccumuli saranno collegati in parallelo e portanno pertanto essere individualmente esclusi, anche in automatico, nei periodi di limitato utilizzo della struttura.

Tale parzializzazione è indispensabile per consentire un utilizzo economico del sistema nella normale operatività, al di fuori degli eventi di grande risonanza.

Le pompe di circolazione saranno ridondanti onde garantire la continuità del servizio in caso di avaria.

- Climatizzazione invernale

Il riscaldamento sarà del tipo a pavimento radiante e sarà suddiviso in due zone, ciascuna dotata di proprio circuito autonomo:

- zona spogliatoi e corridoio accesso pista;
- zona ski rooms.

Si prevede il controllo di temperatura in ciascun locale ski room, mentre negli spogliatoi, corridoio e lounge atleti il controllo avverrà per sotto-zone.

Dovrà essere garantito il mantenimento della temperatura interna di 20°C (tolleranza +2°C) in tutti i locali.

- Idrico-sanitario

Il servizio di preparazione dell'acqua calda sanitaria deve tenere conto di una probabile estrema variabilità di utilizzo tra la situazione di picco in occasione dei grandi eventi e la normale operatività della struttura. Per evitare sovradimensionamenti della potenza termica e consentire al contempo la parzializzazione del sistema, si è previsto l'accumulo di un volume di 6.000 litri di acqua tecnica suddivisi su tre serbatoi collegati tra loro in parallelo, ciascuno dotato di uno scambiatore di calore per la produzione istantanea dell'acqua calda sanitaria.

La scelta di privilegiare un sistema di produzione semi-istantanea dell'acqua calda sanitaria è dettata dalla necessità di evitare il più possibile di accumulare acqua calda sanitaria esponendola ai rischi della proliferazione batterica, tanto più in un contesto nel qual potrebbero aversi lunghi periodi di scarso utilizzo.

La situazione di picco è legata alla presenza di 20 docce nella zona spogliatoi che, in certe occasioni, potrebbero dare luogo ad elevata contemporaneità e a periodi di punta di durata limitata.

La rete distributiva sarà dotata di ricircolo.

- Ventilazione meccanica

L'intervento prevede la realizzazione di un impianto di ventilazione e trattamento dell'aria a servizio di ciascuna delle due zone. L'impianto è progettato e dovrà essere realizzato nel rispetto dei requisiti dettati dalla norma UNI 10339.

Le unità di trattamento aria saranno installate nel locale sottocentrale adiacente al blocco servizi degli spogliatoi. Le centrali di trattamento aria saranno dotate di recuperatori a flussi incrociati ad elevata efficienza. Ciascuna unità sarà equipaggiata con sezione filtrante e batteria di riscaldamento.

La UTA a servizio degli spogliatoi, avente portata di 4.500 mc/h, dovrà garantire il corretto ricambio dell'aria, tenuto conto che trattasi di ambienti interrati privi di aperture finestrate. Essa dovrà immettere l'aria a temperatura neutra, giacché il fabbisogno per riscaldamento sarà coperto dall'impianto radiante a pavimento, L'immissione avverrò nel corridoio di accesso alla pista e negli spazi comuni, mentre le riprese saranno realizzate nei locali spogliatoio e nei servizi igienici.

La UTA a servizio delle ski room, avente portata di 18.000 mc/h, dovrà assicurare un tasso di rinnovo molto elevato, in quanto all'interno dei laboratori potranno essere effettuate lavorazioni con emissione di vapori nocivi. Sulla base dei riferimenti di letteratura si è imposto un tasso di rinnovo di 15 vol/h. In questa zona, l'immissione avverrà a soffitto lungo i corridoi, mentre le riprese saranno realizzate tramite terminale forellinato a soffitto in centro a ciascun locale. Allo scopo di garantire adeguato afflusso d'aria di rinnovo dal corridoio alla singola ski room, sono previste in corrispondenza della porta adeguate griglie di transito.

Con l'obiettivo di un utilizzo efficiente della UTA, si è previsto un sistema a portata variabile, che adegui la portata d'aria trattata all'effettivo utilizzo dei locali. Ciascuna ski room sarà dotata di cassetta VAV di regolazione della portata che determinarà l'afflusso della portata d'estrazione di progetto, necessaria solo nelle lavorazioni di sciolinatura, solo su richiesta e in caso di presenza, mentre nella normale operatività garantirà solo la normale ventilazione di base a fini igienico-sanitari.

Tutte le unità ventilanti saranno dotate di silenziatori sui condotti di mandata e ripresa e di presa aria esterna ed espulsione.

- Regolazione

Si prevede la realizzazione di un sistema di supervisione della termoregolazione e della ventilazione che comprenderà tutte le zone oggetto di intervento nell'ambito dell'intero complesso e sarà predisposto per eventuale estensione ai corpi di fabbrica esistenti.

Il sistema di supervisione consentirà il controllo totale sia da postazione locale che da remoto di tutti i parametri di funzionamento degli impianti termomeccanici, sia a livello di sottocentrale che a livello di singolo ambiente. Esso consentirà inoltre il controllo e la gestione dei parametri di funzionamento delle unità di trattamento aria.

- Elenco potenze elettriche delle pompe:

- primaria da centrale termica:	480 W		
 pompa circuito radiante spogliatoi 	230 W		
 pompa circuito radiante ski rooms: 	230 W		
 pompa circuito UTA spogliatoi: 	80 W		
 pompa circuito UTA ski rooms: 	200 W		
 pompe primario scambiatori acs: 	3 X 80 W		
Trattamento di condizionamento chimico per l'acqu	a (norma UNI 8065)	☑ sì	□ no
Durezza dell'acqua di alimentazione dei generatori o gradi francesi <i>14</i>	di calore per potenza installa	ita maggiore c	uguale a 100 kW
Filtro di sicurezza		☑ sì	□ no

b) Specifiche dei generatori di	energia			
Installazione di un contatore del volun	ne di acqua calda sani	taria	□ sì	☑ no
Installazione di un contatore del volun	ne di acqua di reintegi	o dell'impianto	✓ sì	□ no
Hoval Ultragas 350 nr. 1 Caldaia/Generatore di aria calda				
Generatore di calore a biomassa			□ sì	☑ no
Se "sì" verificare il rispetto del valore del rendi prodotto	mento termico utile nomir	nale in relazione alle clas	si minime di cui	alle pertinenti norme UNI-EN di
Combustibile utilizzato: Metano				
Fluido termovettore: Acqua				
Sistema di emissione (specificare fredde/ventilconvettori/altro):	bocchette/pannelli	radianti/radiatori/	strisce radia	nti/termoconvettori/travi
Valore nominale della potenza termica	a utile <i>325,00 kW</i>			
Rendimento termico utile (o di combu Valore di progetto <i>98,3</i> %	stione per generatori	ad aria calda) al 100	9% Pn	
Rendimento termico utile al 30% Pn Valore di progetto 109,8 %				
Hoval Ultragas 350 nr. 2 Caldaia/Generatore di aria calda				
Generatore di calore a biomassa			□ sì	☑ no
Se "sì" verificare il rispetto del valore del rendi prodotto	mento termico utile nomir	nale in relazione alle clas	si minime di cui	alle pertinenti norme UNI-EN d
Combustibile utilizzato: Metano				
Fluido termovettore: Acqua				
Sistema di emissione (specificare fredde/ventilconvettori/altro):	bocchette/pannelli	radianti/radiatori/	strisce radia	nti/termoconvettori/travi
Valore nominale della potenza termica	a utile <i>325,00 kW</i>			
Rendimento termico utile (o di combu Valore di progetto <i>98,3</i> %	stione per generatori	ad aria calda) al 100	9% Pn	
Rendimento termico utile al 30% Pn Valore di progetto <i>109,8</i> %				

c) Specifiche relative ai sistemi di regolazione dell'impianto termico

Tipo di conduzione invernale prevista: *Intermittente*

Tipo di conduzione estiva prevista: Assente

Sistema di gestione dell'impianto termico: Gestione tramite BMS

Sistema di regolazione climatica in centrale termica (solo per impianti centralizzati): Regolazione climatica della temperatura di mandata all'impianto radiante

Centralina climatica, numero dei livelli di programmazione della temperatura nelle 24 ore: Due livelli normale e ridotto

Regolatori climatici e dispositivi per la regolazione automatica della temperatura ambiente nei singoli locali o nelle singole zone o unità immobiliari:

Sarà presente un sistema di termoregolazione a livello di songolo ambiente, operante su due livelli di set point relativi alle modalità comfort e ridotta. Il set point attuale sarà impostato a livello centrale tramite BMS. L'azione del sistema di regolazione sarà di tipo on/off sugli attuatori elettrotermici dell'impianto a pavimento radiante.

d) Dispositivi per la contabilizzazione del calore/freddo nelle singole unità immobiliari (solo per impianti centralizzati)

Numero di apparecchi, descrizione sintetica del dispositivo: Predisposizione per la contabilizzazione del calore a fini di gestione della struttura.

e) Terminali di erogazione dell'energia termica

Numero di apparecchi (quando applicabile), tipo, potenza termica nominale (quando applicabile) Pannelli radianti a pavimento. Ventilazione a fini di ricambio dell'aria. UTA zona lounge e spogliatoi 4.500 mc/h con recuperatore efficienza 75%. UTA zona laboratori ski rooms 18.000 mc/h con recuperatore efficienza 75%.

f) Condotti di evacuazione dei prodotti della combustione

Descrizione e caratteristiche principali (indicare con quale norma è stato eseguito il dimensionamento) *Non pertinente.*

g) Sistemi di trattamento dell'acqua (tipo di trattamento)

Descrizione e caratteristiche principali Addolcimento dell'acqua calda sanitaria e dell'acqua dell'impianto di riscaldamento. Condizionamento chimico dell'acqua di primo caricamento dell'impianto e dell'acqua di reintegro.

h) Specifiche dell'isolamento termico della rete di distribuzione

Conforme a tabella 1 allegato B del D.P.R. 412/1993.

i) Schemi funzionali degli impianti termici

In allegato inserire schema unifilare degli impianti termici con specificato:

- il posizionamento e la potenze dei terminali di erogazione;
- il posizionamento e tipo dei generatori;
- il posizionamento e tipo degli elementi di distribuzione,
- il posizionamento e tipo degli elementi di controllo;
- il posizionamento e tipo degli elementi di sicurezza.

5.2 Impianti fotovoltaici

Descrizione con caratteristiche tecniche e schemi funzionali in allegato Non previsti in considerazione del profilo di utilizzo della struttura.

5.3 <u>Impianti solari termici</u>

Descrizione con caratteristiche tecniche e schemi funzionali in allegato Non previsti in considerazione del profilo di utilizzo della struttura.

5.4 Impianti di illuminazione

Descrizione con caratteristiche tecniche e schemi funzionali in allegato *Corpi illuminanti a LED estesi all'intero edificio.*

5.5 Altri impianti

Descrizione e caratteristiche tecniche di apparecchiature, sistemi e impianti di rilevante importanza funzionali e schemi funzionali in allegato

Impianto ascensore portata 480 kg, 3,7 kW.

6. PRINCIPALI RISULTATI DEI CALCOLI

a) Involucro edilizio e ricambi d'aria

Trasmittanza termica (U) degli elementi divisori tra alloggi o unità immobiliari confinanti (distinguendo pareti verticali e solai):

pareti verticali: 0,52 W/m²K
 solai: 0,22 W/m²K

Confronto con il valore limite pari a 0,8 W/m²K

Verifica termoigrometrica

(vedi allegati alla presente relazione)

Corpo A - Zona lounge e spogliatoi

Numeri di ricambi d'aria (media nelle 24 ore)	2,00	h ⁻¹
Portata d'aria di ricambio (G)	1 869,69	m³/h

Corpo A - Zona laboratori ski room

Numeri di ricambi d'aria (media nelle 24 ore)	9,00	h ⁻¹
Portata d'aria di ricambio (G)	7 664,45	m³/h

b) Indici di prestazione energetica per la climatizzazione invernale ed estiva, per la produzione di acqua calda sanitaria, per la ventilazione e l'illuminazione

Determinazione dei seguenti indici di prestazione energetica, espressi in kWh/m²anno, così come definiti al paragrafo 3.3 dell'Allegato 1 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005, rendimenti e parametri che ne caratterizzano l'efficienza energetica:

H'_T: coefficiente medio globale di scambio termico per trasmissione per unità di superficie disperdente (UNI EN ISO 13789): 0,19 W/m²K;

 $H'_{T,L}$: coefficiente medio globale limite di scambio termico per trasmissione per unità di superficie disperdente (Tabella 10 appendice A all'Allegato 1 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005): **0,62** W/m²K;

Verifica H'_T < H'_{T,L} POSITIVA

 $A_{sol,est}$ / $A_{sup\ utile}$ = **0,005** < $(A_{sol,est}\ / A_{sup\ utile})_{limite}$ = **0,040** (Tabella 11 appendice A all'Allegato 1 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005)

- EP_{H,nd}: indice di prestazione termica utile per la climatizzazione invernale dell'edificio: 239,33 kWh/m²anno;

EP_{H,nd,limite},: indice di prestazione termica utile per la climatizzazione invernale calcolato nell'edificio di riferimento: **239,00** kWh/m²anno;

- EP_{C,nd}: indice di prestazione termica utile per la climatizzazione estiva dell'edificio (compreso l'eventuale controllo dell'umidità): **0,00** kWh/m²anno;

 $EP_{C,nd,limite}$: indice di prestazione termica utile per la climatizzazione estiva calcolato nell'edificio di riferimento (compreso l'eventuale controllo dell'umidità): 0,00 kWh/m²anno;

EP_{gl} = EP_H + EP_W + EP_V + EP_C + EP_L + EP_T: indice della prestazione energetica globale dell'edificio (Energia primaria);
 questo indice può essere espresso in energia primaria totale (EP_{gl,tot}) e in energia primaria non rinnovabile (EP_{gl,nren})

EP_{gl,tot}: indice della prestazione energetica globale dell'edificio (Energia primaria totale): 333,74 kWh/m²anno;

EP_{gl,tot,limite}: indice della prestazione energetica globale dell'edificio calcolato nell'edificio di riferimento (Energia primaria totale): **483,48** kWh/m²anno;

n_H: efficienza media stagionale dell'impianto di riscaldamento: 1,1086;

 $\eta_{H,limite}$ efficienza media stagionale dell'impianto di riscaldamento calcolato nell'edificio di riferimento: 1,0376;

Verifica $\eta_H > \eta_{H,limite}$ *POSITIVA*

- η_C: efficienza media stagionale dell'impianto di raffrescamento (compreso l'eventuale controllo dell'umidità): ---;
 - $\eta_{C,limite}$: efficienza media stagionale dell'impianto di raffrescamento calcolato nell'edificio di riferimento (compreso l'eventuale controllo dell'umidità): ---;
- η_w: efficienza media stagionale dell'impianto di produzione dell'acqua calda sanitaria: **0,7316**;

 $\eta_{W,limite}$: efficienza media stagionale dell'impianto di produzione dell'acqua calda sanitaria calcolato nell'edificio di riferimento: **0,5667**;

Verifica $\eta_W > \eta_{W,limite} POSITIVA$

c) Consuntivo energia

- energia consegnata o fornita (E_{P,del}): 361 731 kWh
- energia rinnovabile (E_{P,gl,ren}): 26 770 kWh
- energia esportata (E_{P,exp}): 0 kWh
- energia rinnovabile in situ: 0 kWh
- fabbisogno annuale globale di energia primaria (E_{P.gl.tot}): 388 501 kWh

d) Valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi ad alta efficienza

Schede in allegato

7. ELEMENTI SPECIFICI CHE MOTIVANO EVENTUALI DEROGHE A NORME FISSATE DALLA NORMATIVA VIGENTE

Nei casi in cui la normativa vigente consente di derogare ad obblighi generalmente validi, in questa sezione vanno adeguatamente illustrati i motivi che giustificano la deroga nel caso specifico.

8. DOCUMENTAZIONE ALLEGATA (obbligatoria)

✓	Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali e definizione degli elementi costruttivi
	Prospetti e sezioni degli edifici con evidenziazione dei sistemi fissi di protezione solare e definizione degli elementi costruttivi
	Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari
	Schemi funzionali degli impianti contenenti gli elementi di cui all'analoga voce del paragrafo 'Dati relativi agli impianti punto 5.1 lettera i)' e dei punti 5.2, 5.3, 5.4, 5.5
V	Tabelle con indicazione delle caratteristiche termiche, termo igrometriche e della massa efficace dei componenti opachi dell'involucro edilizio con verifica dell'assenza di rischio di formazione di muffe e di condensazioni interstiziali
V	Tabelle con indicazione delle caratteristiche termiche dei componenti finestrati dell'involucro edilizio e della loro permeabilità all'aria
	Schede con indicazione della valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi alternativi ad alta efficienza

9. DICHIARAZIONE DI RISPONDENZA

Il sottoscritto *ing. Giovanni Betti*, iscritto a *Albo dell'Ordine degli Ingegneri* provincia di *Trento* n° iscrizione *1946* essendo a conoscenza delle sanzioni previste dall'articolo 15, commi 1 e 2, del decreto legislativo 192/2005

Dichiara sotto la propria personale responsabilità che:

a) il progetto relativo alle opere di cui sopra è rispondente alle prescrizioni contenute nel decreto legislativo 192/2005 nonché nel decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005;

b) i dati e le informazioni contenuti nella relazione tecnica sono conformi a quanto contenuto o desumibile dagli elaborati progettuali.

La presente relazione tecnica è resa, dal sottoscritto, in forma di dichiarazione sostitutiva di atto notorio ai sensi dell'articolo 47 del D.P.R. 445/2000 e dell'articolo 15, comma 1 del D.Lgs 192/2005 così come modificato dall'articolo 12 del D.L 63/2013

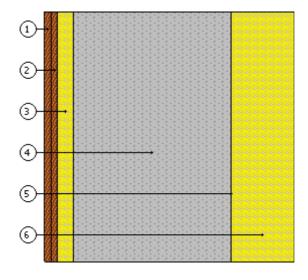
Data 10/08/2022

ing. Giovanni Betti

ORDINE DEGLI INGEGNERI

ISCRIZIONE ALBO N° 1946

A. CARATTERISTICHE TERMOIGROMETRICHE

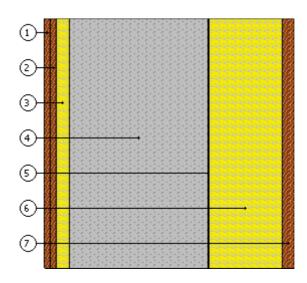

Corpo A - PE01 - Parete perimetrale controterra

N	Descrizione dall'interno verso l'esterno	Spessore [cm]	λ [W/mK]	C [W/m²K]	δ [kg/m³]	$\delta_p \times 10^{12}$ [kg/msPa]	R [m²K/W]
1	Cartongesso in lastre	1,3	0,210		900	24	0,060
2	Cartongesso in lastre	1,3	0,210		900	24	0,060
3	Lana di roccia media densità	3,0	0,035		60	193	0,857
4	Calcestruzzo armato (con 2% di acciaio)	30,0	2,500		2 400	1	0,120
5	Guaina in bitume	0,1	0,170		1 200	0	0,006
6	XPS 300	12,0	0,035		30	2	3,429
Spes	sore totale	47,6				,	

		Resistenza superficiale interna	0,130
		Resistenza superficiale esterna	0,040
Trasmittanza termica [W/m²K]	0,213	Resistenza termica totale	4,701

Struttura verticale esterna	
Trasmittanza [W/m²K]	0,213
Trasmittanza (media tra struttura e ponti termici)[W/m²K]	0,213
Valore limite [W/m²K]	0,260
Trasmittanza termica periodica Y _{IE} [W/m²K]	0,004
Valore limite [W/m²K]	0,100
Sfasamento [h]	11,538
Smorzamento	0,018
Capacità termica [kJ/m²K]	155,000

Massa superficiale: 749,10 kg/m²

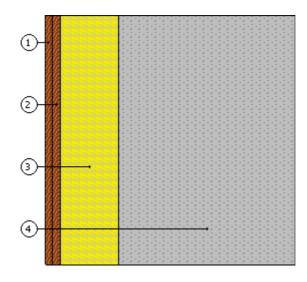


Corpo A - PE02 - Parete perimetrale esterna

N	Descrizione dall'interno verso l'esterno	Spessore [cm]	λ [W/mK]	C [W/m²K]	δ [kg/m³]	$\delta_p \times 10^{12}$ [kg/msPa]	R [m²K/W]
1	Cartongesso in lastre	1,3	0,210		900	24	0,060
2	Cartongesso in lastre	1,3	0,210		900	24	0,060
3	Lana di roccia media densità	3,0	0,035		60	193	0,857
4	Calcestruzzo armato (con 2% di acciaio)	30,0	2,500		2 400	1	0,120
5	Barriera Vapore poliestere	0,1	0,200		1 200	0	0,005
6	XPS 300	16,0	0,035		30	2	4,571
7	Abete (flusso perpendicolare alle fibre)	2,5	0,120		450	0	0,208
Spe	ssore totale	54,1					

0.)2		
	Resistenza superficiale interna	0,130
	Resistenza superficiale esterna	0,040
0,165	Resistenza termica totale	6,051
_		
		0,165
		0,213
		0,260
		0,003
		0,100
		13,029
		0,016
		155,000
		Resistenza superficiale interna

Massa superficiale: 761,55 kg/m²

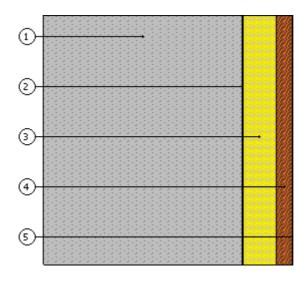

Corpo A - PE03 - Parete perimetrale verso locali non riscaldati

N	Descrizione dall'interno verso l'esterno	Spessore [cm]	λ [W/mK]	C [W/m²K]	δ [kg/m³]	$\delta_p \times 10^{12}$ [kg/msPa]	R [m²K/W]
1	Cartongesso in lastre	1,3	0,210		900	24	0,060
2	Cartongesso in lastre	1,3	0,210		900	24	0,060
3	Lana di roccia media densità	10,0	0,035		60	193	2,857
4	Calcestruzzo armato (con 2% di acciaio)	30,0	2,500		2 400	1	0,120
Spess	ore totale	42,5					

		Resistenza superficiale interna	0,130
		Resistenza superficiale esterna	0,130
Trasmittanza termica [W/m²K]	0,298	Resistenza termica totale	3,356

Struttura verticale interna	
Trasmittanza [W/m²K]	0,298
Trasmittanza (media tra struttura e ponti termici)[W/m²K]	0,213
Valore limite [W/m²K]	0,260
Trasmittanza termica periodica Y _{IE} [W/m²K]	0,029
Valore limite [W/m²K]	
Sfasamento [h]	11,001
Smorzamento	0,096
Capacità termica [kJ/m²K]	155,000

Massa superficiale: 748,50 kg/m²


Corpo A - PE04 - Parete perimetrale locali tecnici

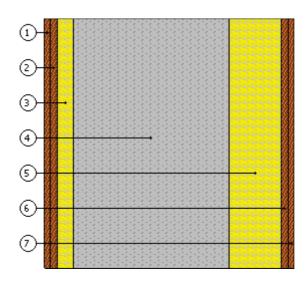
N	Descrizione dall'interno verso l'esterno	Spessore [cm]	λ [W/mK]	C [W/m²K]	δ [kg/m³]	$\delta_p \times 10^{12}$ [kg/msPa]	R [m²K/W]
1	Calcestruzzo armato (con 2% di acciaio)	30,0	2,500		2 400	1	0,120
2	Barriera Vapore poliestere	0,1	0,200		1 200	0	0,005
3	XPS 300	5,0	0,035		30	2	1,429
4	Abete (flusso perpendicolare alle fibre)	2,5	0,120		450	0	0,208
5	Guaina impermeabilizzante PVC	0,1	0,220		1 200	3	0,005
Spess	ore totale	37,7					

		Resistenza superficiale interna	0,130
		Resistenza superficiale esterna	0,040
Trasmittanza termica [W/m²K]	0,516	Resistenza termica totale	1,936

Struttura esterna che delimita locali non riscaldati	
Trasmittanza [W/m²K]	0,516
Valore limite [W/m²K]	0,800
Trasmittanza termica periodica Y _{IE} [W/m²K]	0,054
Valore limite [W/m²K]	0,100
Sfasamento [h]	9,846
Smorzamento	0,105
Capacità termica [kJ/m²K]	155,000

Massa superficiale: 735,15 kg/m²

Corpo A - PIO1 - Parete interna verso locali tecnici

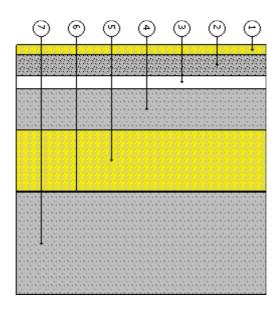

N	Descrizione dall'interno verso l'esterno	Spessore [cm]	λ [W/mK]	C [W/m²K]	δ [kg/m³]	$\delta_p \times 10^{12}$ [kg/msPa]	R [m²K/W]
1	Cartongesso in lastre	1,3	0,210		900	24	0,060
2	Cartongesso in lastre	1,3	0,210		900	24	0,060
3	Lana di roccia media densità	3,0	0,035		60	193	0,857
4	Calcestruzzo armato (con 2% di acciaio)	30,0	2,500		2 400	1	0,120
5	Lana di roccia media densità	10,0	0,035		60	193	2,857
6	Cartongesso in lastre	1,3	0,210		900	24	0,060
7	Cartongesso in lastre	1,3	0,210		900	24	0,060
Spes	ssore totale	48,0					

		Resistenza superficiale interna	0,130
		Resistenza superficiale esterna	0,130
Trasmittanza termica [W/m²K]	0,231	Resistenza termica totale	4,332
	<u></u>		
Struttura verticale interna			
Trasmittanza [W/m²K]			0,231
Trasmittanza (media tra struttura e ponti termici)[W/m²K]			0,213
Valore limite [W/m²K]			0,260
Trasmittanza termica periodica Y _{IE} [W/m²K]			0,004
Valore limite [W/m²K]			
Sfasamento [h]			12,702
Smorzamento			0,018

155,000

Massa superficiale: 772,80 kg/m²

Capacità termica [kJ/m²K]

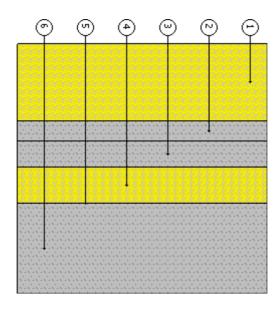


Corpo A - S01 - Basamento

N	Descrizione dall'alto verso il basso	Spessore [cm]	λ [W/mK]	C [W/m²K]	δ [kg/m³]	$\delta_p \times 10^{12}$ [kg/msPa]	R [m²K/W]
1	Pavimentazione interna - gres	2,0	1,470		1 700	28	0,014
2	Malta di cemento	4,0	1,400		2 000	9	0,029
3	Lastra in EPS pavimento radiante	2,5	0,033		30	3	0,758
4	Massetto in calcestruzzo alleggerito (900 kg/m³)	8,0	0,580		900	2	0,138
5	XPS 300	12,0	0,035		30	2	3,429
6	Guaina in bitume	0,1	0,170		1 200	0	0,006
7	Calcestruzzo armato (getto)	20,0	1,910		2 400	1	0,105
Spe	ssore totale	48,6					

	Resistenza superficiale interna	0,170
	Resistenza superficiale esterna	0,040
0,213	Resistenza termica totale	4,687
7		
		0,213
		0,111
		0,280
		0,010
		0,180
		16,448
		0,047
		155,000
	0,213	· ·

Massa superficiale: 591,55 kg/m²



Corpo A - S02 - Copertura

N	Descrizione dall'alto verso il basso	Spessore [cm]	λ [W/mK]	C [W/m²K]	δ [kg/m³]	$\delta_p \times 10^{12}$ [kg/msPa]	R [m²K/W]
1	Sabbia e ghiaia (1700 kg/m³)	30,0	2,000		1 700	4	0,150
2	Massetto in calcestruzzo alleggerito (900 kg/m³)	8,0	0,580		900	2	0,138
3	Calcestruzzo armato (con 2% di acciaio)	10,0	2,500		2 400	1	0,040
4	XPS 300	14,0	0,035		30	2	4,000
5	Guaina impermeabilizzante PVC	0,1	0,220		1 200	3	0,005
6	Calcestruzzo armato (con 2% di acciaio)	35,0	2,500		2 400	1	0,140
Spe	ssore totale	97,1					

Spessore totale	97,1		
		Resistenza superficiale interna	0,100
		Resistenza superficiale esterna	0,040
Trasmittanza termica [W/m²K]	0,217	Resistenza termica totale	4,612
Copertura			
Trasmittanza [W/m²K]			0,217
Valore limite [W/m²K]			0,220
Trasmittanza termica periodica Y _{IE} [W/m²K]			0,001
Valore limite [W/m²K]			0,180
Sfasamento [h]			23,596
Smorzamento			0,006
Capacità termica [kJ/m²K]			155.000

Massa superficiale: 1 667,40 kg/m²

B. CHIUSURE TECNICHE

B.1. Caratteristiche termiche delle chiusure tecniche trasparenti

Descrizione	A _g m²	A _f m²	l _g m	U _g W/m²K	U _f W/m²K	Ψ W/mK	U _w W/m²K	U _{w,corr} W/m²K	U _{lim} W/m²K	Classe perm.
F01 - 360x230	6,33	1,95	23,04	0,50	2,00	0,04	0,96	0,96	1,00	4
F02 - 180x230	3,17	0,97	11,52	0,50	2,00	0,04	0,96	0,96	1,00	4
F03 - lucernario diam. 270 cm	6,60	0,69	10,28	0,80	2,00	0,04	0,97	0,97	1,00	4

B.2. Caratteristiche termiche delle chiusure tecniche opache

Descrizione	U	U*	U _{lim}	Classe di
	[W/m²K]	[W/m²K]	[W/m²K]	permeabilità
Porta metallica esterna	1,26	1,26		0

B.3. Fattore di trasmissione solare totale

Descrizione	Orientamento	g _{gl+sh} [-]	g _{gl+sh,lim} [-]
F01 - 360x230	Verticale	0,29	0,35
F03 - lucernario diam. 270 cm	Orizzontale o inclinata	0,46	0,35

Legenda

Area del vetro Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica dell'elemento vetrato

 U_{f} Trasmittanza termica del telaio

Trasmittanza lineica (nulla in caso di vetro singolo)

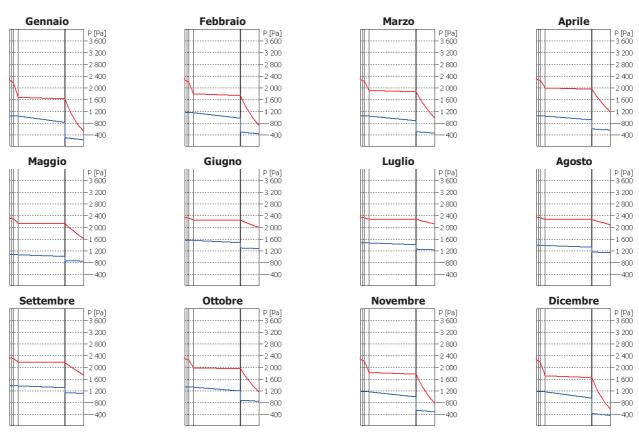
 $U_{w} \\$ Trasmittanza termica totale del serramento

Trasmittanza termica ridotta del serramento comprensiva delle chiusure opache

 $U_{w,corr}$ U* Trasmittanza comprensiva dell'effetto degli ambienti adiacenti (da confrontare con il limite)

 U_{lim} Trasmittanza limite

Fattore di trasmissione solare totale $g_{\text{gl+sh}}$ g_{gl+sh,lim} Fattore di trasmissione solare totale limite


C. VERIFICA TERMOIGROMETRICA

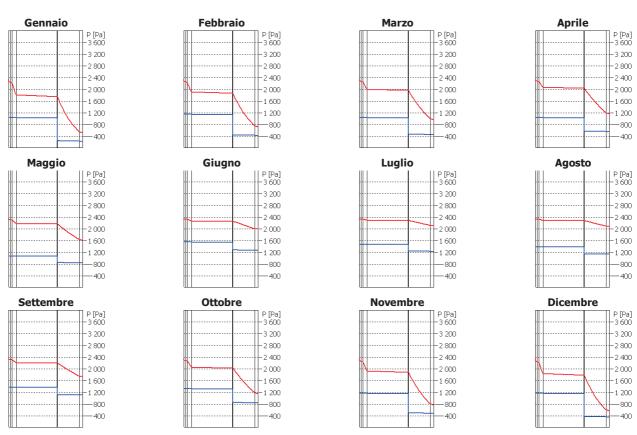
Il calcolo delle pressioni parziali di vapore è effettuato secondo il criterio delle classi di concentrazione

Corpo A - PE01 - Parete perimetrale controterra

N	Descrizione dall'interno verso l'esterno	μ	Spessore [cm]	R [m²K/W]
1	Cartongesso in lastre	8,0	1,3	0,060
2	Cartongesso in lastre	8,0	1,3	0,060
3	Lana di roccia media densità	1,0	3,0	0,857
4	Calcestruzzo armato (con 2% di acciaio)	130,0	30,0	0,120
5	Guaina in bitume	100 000,0	0,1	0,006
6	XPS 300	100,0	12,0	3,429
	Resistenza sup	perficiale interna		0,130
	Resistenza sup	erficiale esterna		0,040
		Totale	47,6	4,701

Mese	T _i [°C]	P _i [Pa]	T _e [°C]	P _e [Pa]	T _{si} [°C]	T _{si,min} [°C]	f _{Rsi,min}	g _c [kg/m²]	M _a [kg/m ²]
Gennaio	20,0	1 045	-2,0	235	18,9	10,9	0,5882	0,0000	0,0000
Febbraio	20,0	1 164	2,3	435	19,1	12,6	0,5808	0,0000	0,0000
Marzo	20,0	1 038	6,5	457	19,3	10,8	0,3219	0,0000	0,0000
Aprile	20,0	1 041	9,3	561	19,4	10,9	0,1502	0,0000	0,0000
Maggio	18,0	946	14,2	846	0,0	0,0	0,0000	0,0000	0,0000
Giugno	18,0	1 374	17,5	1 274	0,0	0,0	0,0000	0,0000	0,0000
Luglio	18,4	1 333	18,4	1 233	0,0	0,0	0,0000	0,0000	0,0000
Agosto	18,2	1 237	18,2	1 137	0,0	0,0	0,0000	0,0000	0,0000
Settembre	18,0	1 214	15,3	1 114	0,0	0,0	0,0000	0,0000	0,0000
Ottobre	20,0	1 330	9,1	842	19,4	14,6	0,5075	0,0000	0,0000
Novembre	20,0	1 178	3,3	484	19,1	12,7	0,5663	0,0000	0,0000
Dicembre	20,0	1 173	-0,8	363	18,9	12,7	0,6484	0,0000	0,0000

fRsi Struttura: 0,9481


La struttura non presenta rischi di formazione muffe.

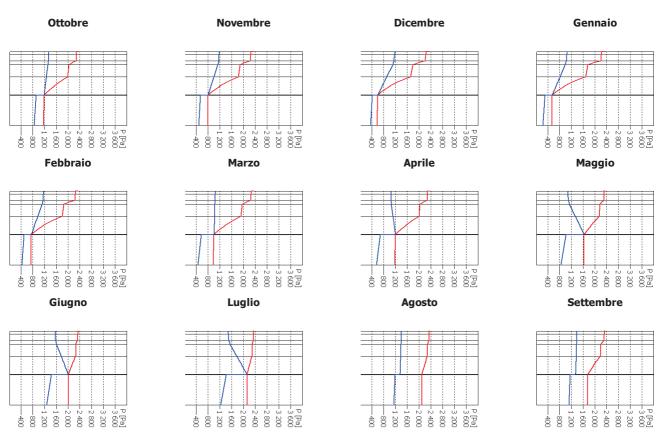
La struttura non è soggetta a fenomeni di condensa interstiziale.

Corpo A - PE02 - Parete perimetrale esterna

N	Descrizione dall'interno verso l'esterno	μ	Spessore [cm]	R [m²K/W]
1	Cartongesso in lastre	8,0	1,3	0,060
2	Cartongesso in lastre	8,0	1,3	0,060
3	Lana di roccia media densità	1,0	3,0	0,857
4	Calcestruzzo armato (con 2% di acciaio)	130,0	30,0	0,120
5	Barriera Vapore poliestere	1 500 000,0	0,1	0,005
6	XPS 300	100,0	16,0	4,571
7	Abete (flusso perpendicolare alle fibre)	625,0	2,5	0,208
		Resistenza superficiale interna		0,130
		Resistenza superficiale esterna		0,040
		Totale	54,1	6,051

Mese	T _i [°C]	P _i [Pa]	T _e [°C]	P _e [Pa]	T _{si} [°C]	T _{si,min} [°C]	$\mathbf{f}_{Rsi,min}$	g _c [kg/m²]	M _a [kg/m²]
Gennaio	20,0	1 045	-2,0	235	19,1	10,9	0,5882	0,0000	0,0000
Febbraio	20,0	1 164	2,3	435	19,3	12,6	0,5808	0,0000	0,0000
Marzo	20,0	1 038	6,5	457	19,5	10,8	0,3219	0,0000	0,0000
Aprile	20,0	1 041	9,3	561	19,6	10,9	0,1502	0,0000	0,0000
Maggio	18,0	946	14,2	846	0,0	0,0	0,0000	0,0000	0,0000
Giugno	18,0	1 374	17,5	1 274	0,0	0,0	0,0000	0,0000	0,0000
Luglio	18,4	1 333	18,4	1 233	0,0	0,0	0,0000	0,0000	0,0000
Agosto	18,2	1 237	18,2	1 137	0,0	0,0	0,0000	0,0000	0,0000
Settembre	18,0	1 214	15,3	1 114	0,0	0,0	0,0000	0,0000	0,0000
Ottobre	20,0	1 330	9,1	842	19,6	14,6	0,5075	0,0000	0,0000
Novembre	20,0	1 178	3,3	484	19,3	12,7	0,5663	0,0000	0,0000
Dicembre	20,0	1 173	-0,8	363	19,2	12,7	0,6484	0,0000	0,0000

fRsi Struttura: 0,9595


La struttura non presenta rischi di formazione muffe.

La struttura non è soggetta a fenomeni di condensa interstiziale.

Corpo A - S01 - Basamento

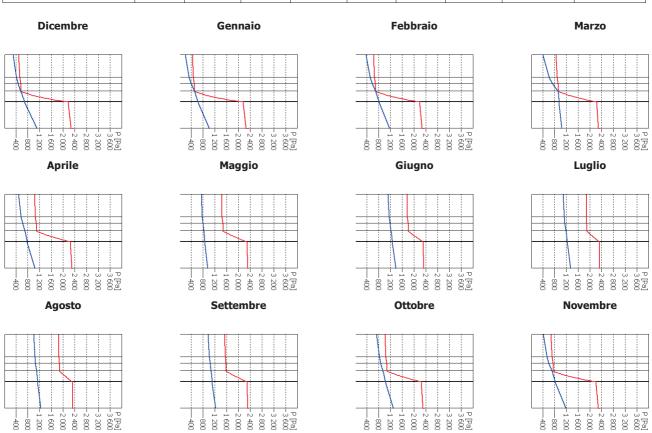
N	Descrizione dall'alto verso il basso	μ	Spessore [cm]	R [m²K/W]	
1	Pavimentazione interna - gres	7,0	2,0	0,014	
2	Malta di cemento	22,0	4,0	0,029	
3	Lastra in EPS pavimento radiante	60,0	2,5	0,758	
4	Massetto in calcestruzzo alleggerito (900 kg/m³)	100,0	8,0	0,138	
5	XPS 300	100,0	12,0	3,429	
6	Guaina in bitume	100 000,0	0,1	0,006	
7	Calcestruzzo armato (getto)	130,0	20,0	0,105	
	Resistenza sup	erficiale interna		0,170	
	Resistenza sup	erficiale esterna		0,040	
		Totale	48,6	4,687	

Mese	T _i [°C]	P _i [Pa]	T _e [°C]	P _e [Pa]	T _{si} [°C]	T _{si,min} [°C]	$\mathbf{f}_{Rsi,min}$	$g_c [kg/m^2]$	M_a [kg/m 2]
Ottobre	20,0	1 330	9,1	842	19,4	14,6	0,5075	0,0021	0,0021
Novembre	20,0	1 178	3,3	484	19,1	12,7	0,5663	0,0073	0,0095
Dicembre	20,0	1 173	-0,8	363	18,9	12,7	0,6484	0,0125	0,0220
Gennaio	20,0	1 045	-2,0	235	18,8	10,9	0,5882	0,0105	0,0325
Febbraio	20,0	1 164	2,3	435	19,1	12,6	0,5808	0,0077	0,0402
Marzo	20,0	1 038	6,5	457	19,3	10,8	0,3219	-0,0013	0,0390
Aprile	20,0	1 041	9,3	561	19,4	10,9	0,1502	-0,0062	0,0328
Maggio	18,0	946	14,2	846	0,0	0,0	0,0000	-0,0196	0,0132
Giugno	18,0	1 374	17,5	1 274	0,0	0,0	0,0000	-0,0132	0,0000
Luglio	18,4	1 333	18,4	1 233	0,0	0,0	0,0000	0,0000	0,0000
Agosto	18,2	1 237	18,2	1 137	0,0	0,0	0,0000	0,0000	0,0000
Settembre	18,0	1 214	15,3	1 114	0,0	0,0	0,0000	0,0000	0,0000

fRsi Struttura: 0,9476

La struttura non presenta rischi di formazione muffe.

La struttura è soggetta a fenomeni di condensa interstiziale (inizia ad ottobre).


La quantità di condensa massima (a febbraio) è di 0,04022 kg/m².

La condensa evapora completamente nei mesi successivi.

Corpo A - S02 - Copertura

N	Descrizione dall'alto verso il basso	μ	Spessore [cm]	R [m²K/W]
1	Sabbia e ghiaia (1700 kg/m³)	50,0	30,0	0,150
2	Massetto in calcestruzzo alleggerito (900 kg/m³)	100,0	8,0	0,138
3	Calcestruzzo armato (con 2% di acciaio)	130,0	10,0	0,040
4	XPS 300	100,0	14,0	4,000
5	Guaina impermeabilizzante PVC	75,0	0,1	0,005
6	Calcestruzzo armato (con 2% di acciaio)	130,0	35,0	0,140
	Resistenza su	perficiale interna		0,100
	Resistenza su	perficiale esterna		0,040
		Totale	97,1	4,612

Mese	T _i [°C]	P _i [Pa]	T _e [°C]	P _e [Pa]	T _{si} [°C]	T _{si,min} [°C]	f _{Rsi,min}	g _c [kg/m ²]	M _a [kg/m ²]
Dicembre	20,0	1 117	-2,8	307	18,8	11,9	0,6468	0,0012	0,0012
Gennaio	20,0	1 008	-4,0	198	18,7	10,4	0,6003	-0,0002	0,0010
Febbraio	20,0	1 177	0,3	377	19,0	12,7	0,6317	-0,0004	0,0006
Marzo	20,0	1 049	4,5	398	19,2	11,0	0,4200	-0,0006	0,0000
Aprile	20,0	1 041	7,3	489	19,3	10,9	0,2834	0,0000	0,0000
Maggio	18,0	843	12,2	743	0,0	0,0	0,0000	0,0000	0,0000
Giugno	18,0	1 221	15,5	1 121	0,0	0,0	0,0000	0,0000	0,0000
Luglio	18,0	1 187	16,4	1 087	0,0	0,0	0,0000	0,0000	0,0000
Agosto	18,0	1 102	16,2	1 002	0,0	0,0	0,0000	0,0000	0,0000
Settembre	18,0	1 079	13,3	979	0,0	0,0	0,0000	0,0000	0,0000
Ottobre	20,0	1 294	7,1	735	19,3	14,2	0,5507	0,0000	0,0000
Novembre	20,0	1 184	1,3	419	19,0	12,8	0,6172	0,0000	0,0000

fRsi Struttura: 0,9475

La struttura non presenta rischi di formazione muffe.

La struttura è soggetta a fenomeni di condensa interstiziale (inizia a dicembre).

La quantità di condensa massima (a dicembre) è di 0,00120 kg/m².

La condensa evapora completamente nei mesi successivi.

Building Automation and Control Systems

Corpo A - Zona lounge e spogliatoi (NON RESIDENZIALE)

			Definizione classi			
		D	С	В	Α	
Risc	aldamento					
	plazione dell'emissione					
nege	Nessuna regolazione automatica					
	Regolazione automatica centrale					
	Regolazione di ogni ambiente					
Х	Regolazione di ogni ambiente con comunicazione					
7.	Regolazione di ogni ambiente con comunicazione e controllo di presenza					
Rego	Regolazione dell'emissione per TABS					
nege	Nessuna regolazione automatica					
	Regolazione automatica centrale					
Х	Regolazione automatica centrale avanzata					
	Regolazione automatica centrale avanzata con funzionamento intermittente e/o regolazione					
	in retroazione della temperatura ambiente					
Rego	olazione della temperatura dell'acqua calda nella rete di distribuzione (mandata o ritorno)					
	Nessuna regolazione automatica					
Х	Compensazione con la temperatura esterna					
	Regolazione in base alla richiesta					
Rego	plazione delle pompe di distribuzione nelle reti					
	Nessuna regolazione automatica					
	Regolazione accensione/spegnimento					
	Regolazione multistadio					
Х	Regolazione delle pompe a velocità variabile					
Rego	plazione intermittente dell'emissione e/o della distribuzione					
	Nessuna regolazione automatica					
	Regolazione automatica con programma orario fisso					
Х	Regolazione automatica con partenza/arresto ottimizzato					
	Regolazione automatica con valutazione della richiesta					
Rego	plazione del generatore per riscaldamento a combustione e teleriscaldamento					
	Regolazione a temperatura costante					
Х	Regolazione a temperatura variabile in funzione della temperatura esterna					
	Regolazione a temperatura variabile in funzione del carico					
Rego	plazione del generatore per le pompe di calore					
	Regolazione a temperatura costante					
	Regolazione a temperatura variabile in funzione della temperatura esterna					
	Regolazione a temperatura variabile in funzione del carico o della richiesta					
Seau	uenziamento di diversi generatori					
	Priorità basate solo sul tempo di funzionamento					
Х	Priorità basate solo sui carichi					
	Priorità basate sui carichi e sulla richiesta					
	Priorità basate sull'efficienza del generatore					
Acqu	ua calda sanitaria					
	plazione della temperatura di accumulo di DHW con riscaldamento elettrico integrato o pompa	di ca	alore	elett	rica	
	Regolazione automatica accensione/spegnimento					
	Regolazione automatica accensione/spegnimento e avvio a tempo del caricamento					
	Regolazione automatica accensione/spegnimento, avvio a tempo del caricamento e gestione					
	multisensore dell'accumulo					

_							
Reg	olazione della temperatura di accumulo di DHW con generatore di calore						
	Regolazione automatica accensione/spegnimento						
X	Regolazione automatica accensione/spegnimento e avvio a tempo del caricamento						
	Regolazione automatica accensione/spegnimento, avvio a tempo del caricamento e						
	mandata in base alla richiesta o gestione multisensore dell'accumulo						
	Regolazione automatica accensione/spegnimento, avvio a tempo del caricamento, mandata						
	in base alla richiesta o regolazione della temperatura di ritorno e gestione multisensore						
	dell'accumulo						
Reg	olazione della temperatura di accumulo di DHW a variazione stagionale: con genera	tore	di	calor	e o		
	aldamento elettrico integrato						
	Regolazione a selezione manuale con accensione/spegnimento della pompa di carico o						
	riscaldamento elettrico						
	Regolazione a selezione automatica con accensione/spegnimento della pompa di carico o						
	riscaldamento elettrico e avvio a tempo del caricamento						
	Regolazione a selezione automatica con accensione/spegnimento della pompa di carico o						
	riscaldamento elettrico, avvio a tempo del caricamento e mandata in base alla richiesta o						
	gestione multisensore dell'accumulo						
	Regolazione a selezione automatica con generazione di calore, mandata in base alla richiesta						
	e regolazione della temperatura di ritorno o riscaldamento elettrico, avvio a tempo del						
	caricamento e gestione multisensore dell'accumulo						
Reg	olazione della temperatura di accumulo di DHW con collettore solare e generazione di calore						
	Regolazione a selezione manuale dell'energia solare o della generazione di calore						
	Regolazione automatica del carico di accumulo solare (priorità 1) e del carico di accumulo						
	integrativo						
	Regolazione automatica del carico di accumulo solare (priorità 1) e del carico di accumulo						
	integrativo, mandata in base alla richiesta o gestione multisensore dell'accumulo						
	Regolazione automatica del carico di accumulo solare (priorità 1) e del carico di accumulo						
	integrativo, mandata in base alla richiesta, regolazione della temperatura di ritorno e						
	gestione multisensore dell'accumulo						
Reg	olazione della pompa di ricircolo DHW						
	Senza programma a tempo						
	Con programma a tempo						
Х	Regolazione in base alla richiesta						

Determinazione della classe di efficienza BACS

Metodo di calcolo della classe BACS: Punteggio medio

Servizio	Punteggio	Classe
Riscaldamento	2,00	В
Acqua calda sanitaria	2,00	В
TOTALE	2.00	В

Corpo A - Zona laboratori ski room (NON RESIDENZIALE)

D C B Regolazione dell'emissione Nessuna regolazione automatica Regolazione automatica centrale Regolazione di ogni ambiente X Regolazione di ogni ambiente con comunicazione Regolazione di ogni ambiente con comunicazione e controllo di presenza Regolazione dell'emissione per TABS Nessuna regolazione automatica Regolazione automatica centrale **X** | Regolazione automatica centrale avanzata Regolazione automatica centrale avanzata con funzionamento intermittente e/o regolazione in retroazione della temperatura ambiente Regolazione della temperatura dell'acqua calda nella rete di distribuzione (mandata o ritorno) Nessuna regolazione automatica Compensazione con la temperatura esterna Regolazione in base alla richiesta Regolazione delle pompe di distribuzione nelle reti Nessuna regolazione automatica Regolazione accensione/spegnimento Regolazione multistadio X Regolazione delle pompe a velocità variabile Regolazione intermittente dell'emissione e/o della distribuzione Nessuna regolazione automatica Regolazione automatica con programma orario fisso **X** Regolazione automatica con partenza/arresto ottimizzato Regolazione automatica con valutazione della richiesta Regolazione del generatore per riscaldamento a combustione e teleriscaldamento Regolazione a temperatura costante **X** Regolazione a temperatura variabile in funzione della temperatura esterna Regolazione a temperatura variabile in funzione del carico Regolazione del generatore per le pompe di calore Regolazione a temperatura costante Regolazione a temperatura variabile in funzione della temperatura esterna Regolazione a temperatura variabile in funzione del carico o della richiesta Sequenziamento di diversi generatori Priorità basate solo sul tempo di funzionamento X Priorità basate solo sui carichi Priorità basate sui carichi e sulla richiesta Priorità basate sull'efficienza del generatore

Definizione classi

Determinazione della classe di efficienza BACS

Metodo di calcolo della classe BACS: Punteggio medio

Servizio	Punteggio	Classe
Riscaldamento	2,00	В
TOTALE	2,00	В

RELAZIONE DI CALCOLO PONTI TERMICI

Comune: Tesero (TN)

Descrizione: Centro Fondo Tesero - Nuovo edificio interrato

Committente: Comune di Tesero (TN)

Progettista: ing. Giovanni Betti

SOMMARIO

PREMESSA	3
Ponte termico parete controterra-basamento	4
Ponte termico parete esterna-copertura	8

PREMESSA

I ponti termici, che in genere si verificano in corrispondenza di qualsiasi giunzione tra componenti edilizi o dove nell'edificio la struttura cambia composizione, hanno due conseguenze:

- una variazione del flusso di calore, e
- una variazione della temperatura superficiale interna.

Sebbene vengano utilizzate procedure di calcolo simili, le procedure non sono identiche per il calcolo dei flussi di calore e delle temperature superficiali.

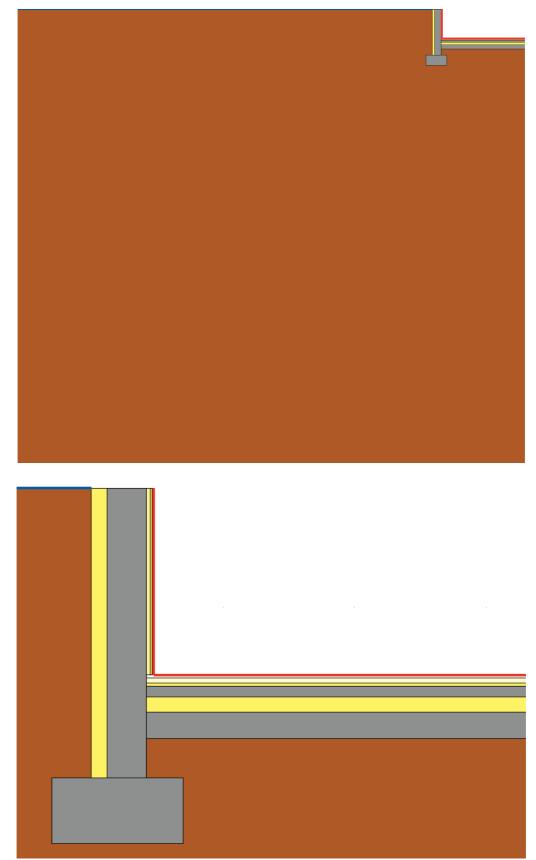
In questa relazione di calcolo si riporta la valutazione della trasmittanza lineica del ponte termico, sia per misure interne sia per misure esterne, tramite analisi ad elementi finiti.

Per ogni ponte termico sono analizzati: la distribuzione del flusso termico, il coefficiente di accoppiamento termico per calcolo bidimensionale, la distribuzione delle temperature calcolate ad ogni nodo, le temperature superficiali e di conseguenza il rischio di formazione di muffa.

Le norme utilizzate per il calcolo sono:

UNI EN ISO 10211: Ponti termici in edilizia - Flussi termici e temperature superficiali - Calcoli dettagliati

UNI EN ISO 13788: Prestazione igrotermica dei componenti e degli elementi per edilizia - Temperatura superficiale interna per evitare l'umidità superficiale critica e la condensazione interstiziale - Metodi di calcolo


UNI EN ISO 6946: Componenti ed elementi per edilizia - Resistenza termica e trasmittanza termica - Metodo di calcolo

Il metodo di calcolo utilizzato nella valutazione del ponte termico si basa su quanto indicato dalla norma UNI EN ISO 10211, che definisce i limiti geometrici del modello, i criteri da adottare per l'analisi del modello, la convergenza del metodo di calcolo e le condizioni termiche al contorno.

In particolare il metodo numerico soddisfa i requisiti elencati di seguito, come da UNI EN ISO 10211:

- Il metodo fornisce temperature e flussi di calore, per ogni località richiesta.
- Per un numero crescente di suddivisioni, la soluzione del metodo convergere alla soluzione analitica, se tale soluzione esiste.
- La somma dei valori assoluti di tutti i flussi di calore che entrano nell'oggetto vengono calcolati due volte, per n nodi (o celle) e per 2n nodi (o celle). La differenza tra questi due risultati non deve superare l'1%. In caso negativo, saranno effettuate ulteriori suddivisioni fino a quando questo criterio è soddisfatto.

Ponte termico parete controterra-basamento

Modello geometrico del ponte termico

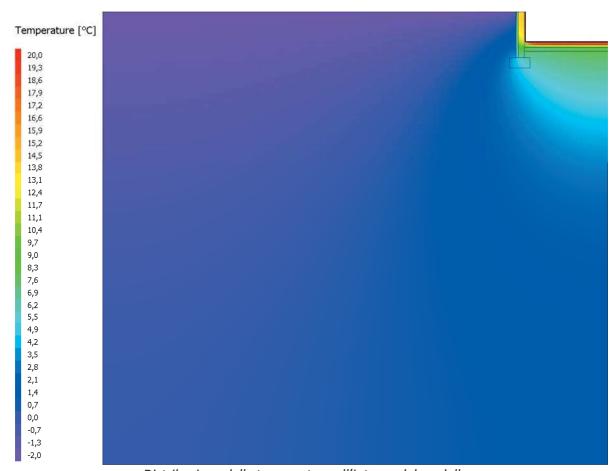
MATERIALI UTILIZZATI

	Materiale	λ [W/mK]
1	Terreno	2,000
2	Cartongesso in lastre	0,210
3	Lana di roccia media densità	0,035
4	Calcestruzzo armato (con 2% di acciaio)	2,500
5	XPS 300	0,035
6	Calcestruzzo armato (getto)	1,910
7	Massetto in calcestruzzo alleggerito (900 kg/m³)	0,580
8	Lastra in EPS pavimento radiante	0,033
9	Malta di cemento	1,400
10	Pavimentazione interna - gres	1,470

Legenda

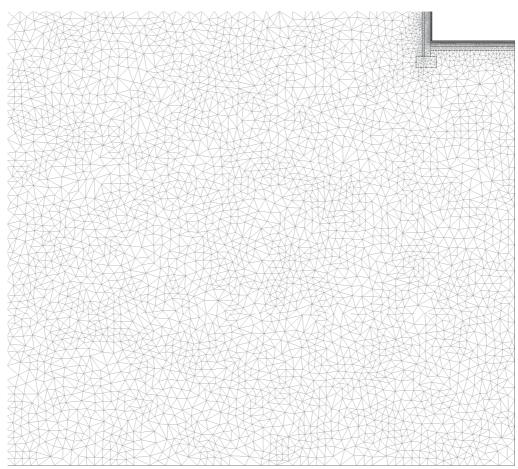
λ Conduttività termica del materiale

CONDIZIONI AL CONTORNO


	Confine	θ [°C]	R _s [m ² K/W]
1	Ambiente esterno	-2,03	0,040
2	Ambiente interno riscaldato	20,00	0,170
3	Ambiente interno riscaldato	20,00	0,130

Legenda

θ Temperatura dell'ambiente


R_S Resistenza superficiale del materiale a contatto con l'ambiente

CALCOLO DELLA TRASMITTANZA LINEICA

Distribuzione delle temperature all'interno del modello

Flusso termico Φ	23,322	W/m
Coefficiente di accoppiamento L_{2D}	1,059	W/mK
Trasmittanza lineica interna $\psi_{\rm i}$	0,413	W/mK
Trasmittanza lineica esterna ψ_{e}	0,288	W/mK

Mesh di calcolo

	U [W/m²K]	L _{int} [m]	L _{ext} [m]	b _{tr}
1	0,152	1,425	1,910	
2	0,107	4,000	4,475	

Legenda

U Trasmittanza termica del componente

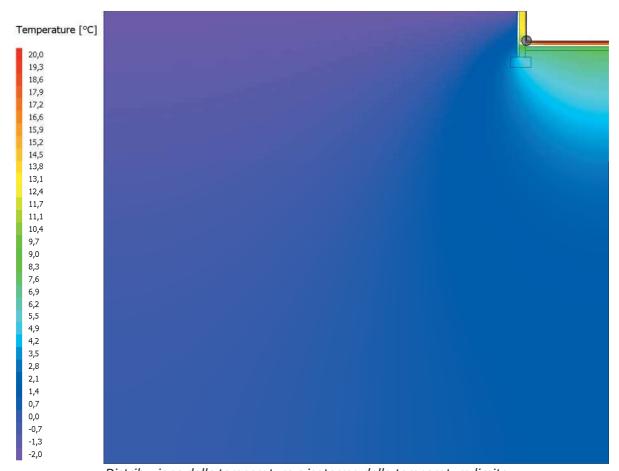
 $\begin{array}{ll} L_{int} & \quad Lunghezza \ considerata \ per \ il \ calcolo \ della \ trasmittanza \ lineica \ esterna \\ L_{ext} & \quad Lunghezza \ considerata \ per \ il \ calcolo \ della \ trasmittanza \ lineica \ esterna \end{array}$

b_{tr} Coefficiente di scambio termico per locali non riscaldati

VERIFICA FORMAZIONE MUFFA

Tipo di calcolo Umidità relativa interna

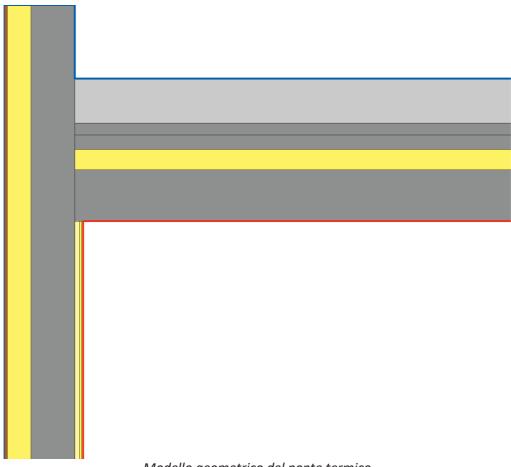
Umidità relativa interna 50,00 %


Mese	θ _e [°C]	θ _i [°C]	φi [%]	p _i [Pa]	p _{sat} (θ _{si}) [Pa]	θ _{si,min} [°C]	f _{Rsi,min}
Ottobre	12,28	20,00	50,00	1 168	1 461	12,62	0,0452
Novembre	9,18	20,00	50,00	1 168	1 461	12,62	0,3186
Dicembre	6,28	20,00	50,00	1 168	1 461	12,62	0,4626
Gennaio	4,23	20,00	50,00	1 168	1 461	12,62	0,5324
Febbraio	3,63	20,00	50,00	1 168	1 461	12,62	0,5496
Marzo	5,78	20,00	50,00	1 168	1 461	12,62	0,4815
Aprile	7,88	20,00	50,00	1 168	1 461	12,62	0,3917

Legenda

 $\begin{array}{ll} \theta_e & \quad \text{Temperatura esterna} \\ \theta_i & \quad \text{Temperatura interna} \\ \phi_i & \quad \text{Umidità relativa esterna} \end{array}$

 $\begin{array}{ll} p_i & \text{Pressione parziale di vapore acqueo interna} \\ p_{sat}(\theta_{si}) & \text{Pressione di saturazione minima accettabile} \\ \theta_{si,min} & \text{Temperatura superficiale minima accettabile} \end{array}$


f_{Rsi,min} Fattore di temperatura minimo

Distribuzione delle temperature e isoterma della temperatura limite

 $\begin{tabular}{lll} Mese & critico & Febbraio \\ Fattore & di & temperatura & massimo & f_{Rsi,max} & 0,5496 \\ Fattore & di & temperatura & f_{Rsi} & 0,7458 \\ Rischio & formazione & muffe & {\bf ASSENTE} \\ \end{tabular}$

Ponte termico parete esterna-copertura

Modello geometrico del ponte termico

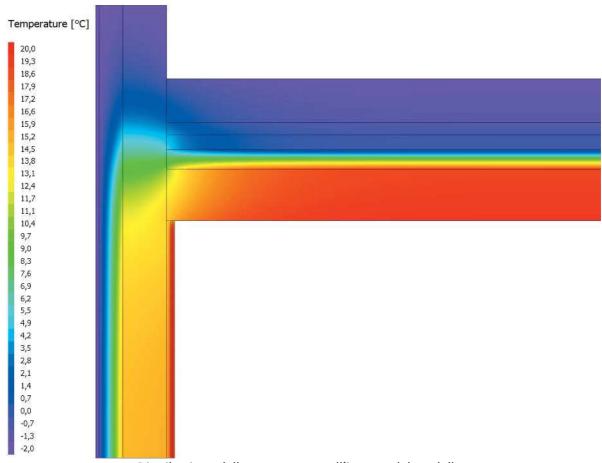
MATERIALI UTILIZZATI

	Materiale	λ [W/mK]
1	Cartongesso in lastre	0,210
2	Lana di roccia media densità	0,035
3	Calcestruzzo armato (con 2% di acciaio)	2,500
4	XPS 300	0,035
5	Abete (flusso perpendicolare alle fibre)	0,120
6	Massetto in calcestruzzo alleggerito (900 kg/m³)	0,580
7	Sabbia e ghiaia (1700 kg/m³)	2,000

Legenda

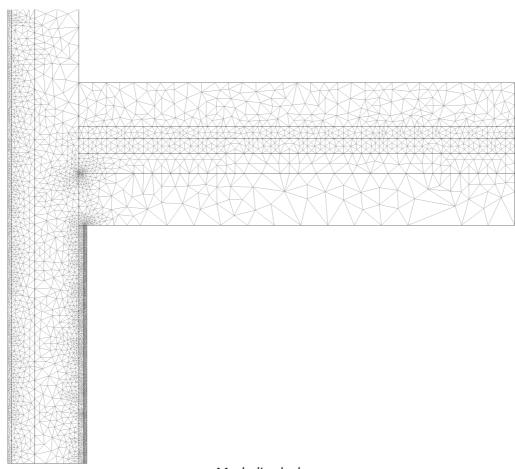
λ Conduttività termica del materiale

CONDIZIONI AL CONTORNO


	Confine	θ [°C]	R _s [m ² K/W]
1	Ambiente esterno	-2,03	0,040
2	Ambiente interno riscaldato	20,00	0,130
3	Ambiente interno riscaldato	20,00	0,100

Legenda

θ Temperatura dell'ambiente


R_s Resistenza superficiale del materiale a contatto con l'ambiente

CALCOLO DELLA TRASMITTANZA LINEICA

Distribuzione delle temperature all'interno del modello

Flusso termico Φ	35,570	W/m
Coefficiente di accoppiamento L_{2D}	1,615	W/mK
Trasmittanza lineica interna ψ_{i}	0,716	W/mK
Trasmittanza lineica esterna ψ _e	0,439	W/mK

Mesh di calcolo

	U [W/m²K]	L _{int} [m]	L _{ext} [m]	b _{tr}
1	0,165	1,620	2,590	
2	0,217	2,910	3,450	

Legenda

U Trasmittanza termica del componente

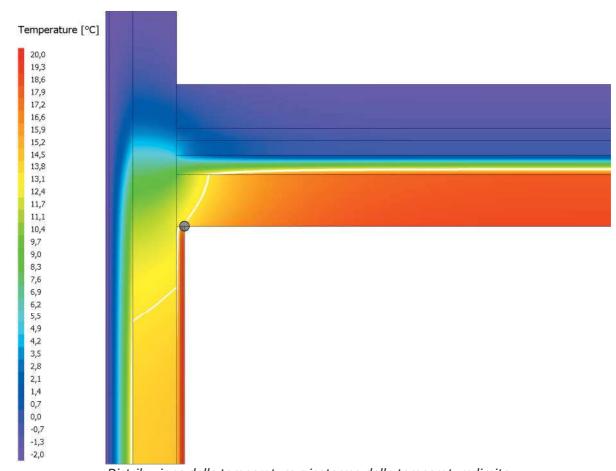
 $\begin{array}{ll} L_{int} & \quad Lunghezza \ considerata \ per \ il \ calcolo \ della \ trasmittanza \ lineica \ esterna \\ L_{ext} & \quad Lunghezza \ considerata \ per \ il \ calcolo \ della \ trasmittanza \ lineica \ esterna \end{array}$

 $b_{tr} \hspace{1cm} \hbox{Coefficiente di scambio termico per locali non riscaldati} \\$

VERIFICA FORMAZIONE MUFFA

Tipo di calcolo Umidità relativa interna

Umidità relativa interna 50,00 %


Mese	θ _e [°C]	θ _i [°C]	φi [%]	p _i [Pa]	p _{sat} (θ _{si}) [Pa]	θ _{si,min} [°C]	f _{Rsi,min}
Ottobre	7,07	20,00	50,00	1 168	1 461	12,62	0,4296
Novembre	1,27	20,00	50,00	1 168	1 461	12,62	0,6062
Dicembre	-2,83	20,00	50,00	1 168	1 461	12,62	0,6769
Gennaio	-4,03	20,00	50,00	1 168	1 461	12,62	0,6931
Febbraio	0,27	20,00	50,00	1 168	1 461	12,62	0,6262
Marzo	4,47	20,00	50,00	1 168	1 461	12,62	0,5251
Aprile	7,27	20,00	50,00	1 168	1 461	12,62	0,4206

Legenda

 $\begin{array}{ll} \theta_e & \quad \text{Temperatura esterna} \\ \theta_i & \quad \text{Temperatura interna} \\ \phi_i & \quad \text{Umidità relativa esterna} \end{array}$

 $\begin{array}{ll} p_i & \text{Pressione parziale di vapore acqueo interna} \\ p_{sat}(\theta_{si}) & \text{Pressione di saturazione minima accettabile} \\ \theta_{si,min} & \text{Temperatura superficiale minima accettabile} \end{array}$

 $f_{Rsi,min}$ Fattore di temperatura minimo

Distribuzione delle temperature e isoterma della temperatura limite

Mese critico Gennaio

Fattore di temperatura massimo $f_{Rsi,max}$ 0,6931

Fattore di temperatura f_{Rsi} 0,7018 Rischio formazione muffe ASSENTE

RELAZIONE DI CALCOLO

Comune: Tesero (TN)

Descrizione: Centro Fondo Tesero

Committente: Comune di Tesero (TN)

Progettista impianti termici: ing. Giovanni Betti

Parametri climatici della località

Gradi giorno 4028 ℃

Temperatura minima di progetto

-19,1 ℃

Altitudine

1000 m

Zona climatica

Giorni di riscaldamento

Velocità del vento

3,7 m/s

Zona di vento

Province di riferimento

TN

Temperature medie mensili (°C)

GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
-2,0	2,3	6,5	9,3	14,2	17,5	18,4	18,2	15,3	9,1	3,3	-0,8

Irradianza media mensile (W/m²)

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
Orizz.	83,3	108,8	164,4	199,1	235,0	233,8	239,6	225,7	177,1	118,1	75,2	61,3
S	221,2	178,5	180,2	135,1	121,0	111,1	115,7	134,0	156,1	172,1	158,0	172,6
SE/SO	165,8	145,6	167,6	150,1	145,2	134,1	141,6	155,6	156,7	145,3	122,0	128,2
E/O	80,3	90,8	127,2	140,1	154,9	150,0	156,3	154,5	130,5	96,4	66,3	59,4
NE/NO	21,4	39,3	68,2	97,3	126,6	130,8	131,1	115,2	80,3	44,3	24,6	16,2
N	17,0	28,2	39,6	60,5	94,8	106,5	100,8	76,8	48,1	29,2	20,3	14,2

Dispersioni dei locali

Edificio Corpo A

Subalterno Corpo A

Corpo A - Zona lounge e spogliatoi

Locale	θ _i [°C]	Pt [W]	P _v [W]	P _{RH} [W]	P[W]
Area Lounge	20,00	10 695,98	9 050,91	0,00	19 746,90
S17 - Spogliatoio	20,00	84,54	137,69	0,00	222,23
S18 - Spogliatoio	20,00	91,28	149,09	0,00	240,37
S19 - Spogliatoio	20,00	84,27	137,22	0,00	221,49
S20 - Spogliatoio	20,00	87,63	143,06	0,00	230,69
Spogliatoio	20,00	166,58	128,89	0,00	295,47
WC Atleti	20,00	128,92	140,03	0,00	268,95
Doccia Atleti	20,00	551,58	472,23	0,00	1 023,81
WC Atleti 1	20,00	170,84	137,22	0,00	308,06
Doccia atleti 1	20,00	709,43	455,44	0,00	1 164,87
WC 1	20,00	98,39	166,45	0,00	264,84
WC	20,00	98,57	166,73	0,00	265,30
S15 - Spogliatoio	20,00	102,04	173,00	0,00	275,05
S8 - Spogliatoio	20,00	101,87	172,69	0,00	274,57
S9 - Spogliatoio	20,00	103,93	176,36	0,00	280,29
S14 - Spogliatoio	20,00	103,68	175,99	0,00	279,67
S13 - Spogliatoio	20,00	103,88	176,32	0,00	280,21
S10 - Spogliatoio	20,00	104,32	177,08	0,00	281,40
S11 - Spogliatoio	20,00	107,57	183,01	0,00	290,59
S12 - Spogliatoio	20,00	106,80	181,66	0,00	288,46
Locale 56	20,00	42,97	67,60	0,00	110,57
Locale 57	20,00	43,08	67,80	0,00	110,88
S1 - Spogliatoio	20,00	306,47	185,10	0,00	491,56
S2 - Spogliatoio	20,00	208,20	192,72	0,00	400,92
S3 - Spogliatoio	20,00	208,22	192,65	0,00	400,87
S4 - Spogliatoio	20,00	208,19	192,60	0,00	400,79
S5 - Spogliatoio	20,00	208,14	192,52	0,00	400,66
S6 - Spogliatoio	20,00	208,28	192,79	0,00	401,08
S7 - Spogliatoio	20,00	198,53	182,78	0,00	381,31
Totale zona		15 434,18	14 167,63	0,00	29 601,86

Corpo A - Zona laboratori ski room

Locale	θ _i [°C]	Pt [W]	P _v [W]	P _{RH} [W]	P[W]
D1 - Deposito Ski Room	20,00	418,93	1 650,80	0,00	2 069,73
D2 - Deposito Ski Room	20,00	416,44	1 640,53	0,00	2 056,97
D3 - Deposito Ski Room	20,00	420,52	1 657,67	0,00	2 078,19
D4 - Deposito Ski Room	20,00	426,76	1 683,84	0,00	2 110,61
D5 - Deposito Ski Room	20,00	438,99	1 734,98	0,00	2 173,98
D6 - Deposito Ski Room	20,00	437,95	1 730,80	0,00	2 168,76
D7 - Deposito Ski Room	20,00	689,23	1 769,49	0,00	2 458,73
Anti WC	20,00	207,31	521,89	0,00	729,20
WC	20,00	136,58	353,00	0,00	489,58
D8 - Deposito Ski Room	20,00	230,83	1 737,96	0,00	1 968,78
D9 - Deposito Ski Room	20,00	227,48	1 710,63	0,00	1 938,11
D10 - Deposito Ski Room	20,00	228,84	1 721,40	0,00	1 950,24
D11 - Deposito Ski Room	20,00	225,21	1 692,57	0,00	1 917,77
D12 - Deposito Ski Room	20,00	216,33	1 622,16	0,00	1 838,50
D26 - Locale pulizie	20,00	138,02	1 009,90	0,00	1 147,92
D13 - Deposito Ski Room	20,00	223,77	1 657,68	0,00	1 881,45
D14 - Deposito Ski Room	20,00	218,67	1 639,99	0,00	1 858,66
D15 - Deposito Ski Room	20,00	217,94	1 634,18	0,00	1 852,12
D16 - Deposito Ski Room	20,00	218,67	1 639,99	0,00	1 858,66
D17 - Deposito Ski Room	20,00	218,23	1 636,49	0,00	1 854,72
WC 1	20,00	71,28	496,69	0,00	567,97
WC 2	20,00	230,73	500,72	0,00	731,44
WC 4	20,00	239,94	364,51	0,00	604,46
WC 3	20,00	33,11	221,93	0,00	255,04
WC 5	20,00	38,44	248,78	0,00	287,22
D22 - Deposito Ski Room	20,00	222,89	1 658,72	0,00	1 881,62
D21 - Deposito Ski Room	20,00	178,96	1 315,62	0,00	1 494,58
D20 - Deposito Ski Room	20,00	279,33	2 113,40	0,00	2 392,73
D19 - Deposito Ski Room	20,00	310,08	2 348,82	0,00	2 658,91

D18 - Deposito Ski Room	20,00	431,68	3 269,50	0,00	3 701,19
Corridoio Ski Room	20,00	696,08	3 705,91	0,00	4 402,00
Corrdioio Ski Room	20,00	2 603,06	11 386,93	0,00	13 989,99
Totale zona		11 292,28	58 077,48	0,00	69 369,83
Totale subalterno		26 726,46	72 245,11	0,00	98 971,69
Totale edificio		26 726,46	72 245,11	0,00	98 971,69
TOTALE		26 726,46	72 245,11	0,00	98 971,69

 $\label{eq:local_local_local_local} \begin{array}{l} \textbf{Legenda} \\ \theta_i: \ temperatura \ interna \\ P_t: \ potenza \ dispersa \ per \ trasmissione \\ P_v: \ potenza \ dispersa \ per \ ventilazione \\ P_{\text{RH}}: \ potenza \ di \ ripresa \ richiesta \ per \ compensare \ gli \ effetti \ del \ riscaldamento \ intermittente \\ P: \ potenza \ dispersa \ totale \\ \end{array}$

Zone termiche non calcolate

Temperatura interna T_u [℃]

	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
Corpo A - Locali tecnici	1,7	5,3	8,7	11,1	15,2	17,9	18,6	18,5	16,1	10,9	6,1	2,7
Autorimessa	2,4	5,8	9,2	11,4	15,3	18,0	18,7	18,5	16,2	11,3	6,6	3,3
Ascensore	11,2	12,9	14,6	15,7	17,7	19,0	19,3	19,3	18,1	15,6	13,3	11,7
Ingresso	6,8	9,4	11,9	13,6	16,5	18,5	19,0	18,9	17,2	13,4	10,0	7,5

Edificio Corpo A

Subalterno Corpo A

Corpo A - Zona lounge e spogliatoi

Perdita di calore per trasmissione

Perdite di calore per trasmissione verso l'esterno

Strutture Esterne

Struttura	Esposizione	A [m ²]	U [W/m ² K]	H [W/K]
Corpo A - PE01 - Parete perimetrale controterra	Est	222,969	0,213	47,434
Corpo A - PE01 - Parete perimetrale controterra	Sud-Ovest	28,134	0,213	5,985
Corpo A - PE02 - Parete perimetrale esterna	Est	15,650	0,165	2,586
Corpo A - PE02 - Parete perimetrale esterna	Sud-Est	4,995	0,165	0,826
Corpo A - PE02 - Parete perimetrale esterna	Nord-Ovest	6,921	0,165	1,144
Corpo A - PE02 - Parete perimetrale esterna	Nord-Est	6,774	0,165	1,119
Corpo A - PE02 - Parete perimetrale esterna	Nord	20,079	0,165	3,318
Corpo A - PE02 - Parete perimetrale esterna	Sud	21,093	0,165	3,486
Corpo A - PE02 - Parete perimetrale esterna	Sud-Ovest	7,055	0,165	1,166
Corpo A - PE02 - Parete perimetrale esterna	Ovest	7,053	0,165	1,166
Corpo A - S02 - Copertura	Orizzontale	687,671	0,217	149,089
F01 - 360x230	Nord	8,280	0,964	7,982
F01 - 360x230	Sud	8,280	0,964	7,982
F03 - lucernario diam. 270 cm	Orizzontale	7,290	0,969	7,064
Totale		1 052,244		240,347

Ponte termico	Esposizione	l [m]	ψ [W/mK]	H [W/K]
Ponte termico serramenti	Sud	11,800	0,220	2,596
Ponte termico serramenti	Nord	11,800	0,220	2,596
Ponte termico parete controterra-basamento	Est	50,000	0,288	14,400
Ponte termico parete controterra-basamento	Sud-Ovest	6,000	0,288	1,728
Ponte termico parete esterna-copertura	Nord-Ovest	7,700	0,439	3,380
Ponte termico parete esterna-copertura	Est	2,200	0,439	0,966
Ponte termico parete esterna-copertura	Sud	4,600	0,439	2,019
Ponte termico parete esterna-copertura	Nord	4,600	0,439	2,019
Totale				29,705

H _D	270.052
טוין	210,002

Perdite di calore per trasmissione verso il terreno

Struttura	A [m²]	U [W/m²K]	b _{tr}	H [W/K]
Corpo A - S01 - Basamento	425,898	0,10	0,450	40,892
Corpo A - S01 - Basamento	6,912	0,10	0,450	0,664
Corpo A - S01 - Basamento	7,463	0,10	0,450	0,717
Corpo A - S01 - Basamento	6,890	0,10	0,450	0,661
Corpo A - S01 - Basamento	7,164	0,10	0,450	0,688
Corpo A - S01 - Basamento	7,492	0,10	0,450	0,719
Corpo A - S01 - Basamento	7,819	0,10	0,450	0,751
Corpo A - S01 - Basamento	25,158	0,10	0,450	2,416
Corpo A - S01 - Basamento	7,675	0,10	0,450	0,737
Corpo A - S01 - Basamento	25,595	0,10	0,450	2,457
Corpo A - S01 - Basamento	8,044	0,10	0,450	0,772
Corpo A - S01 - Basamento	8,059	0,10	0,450	0,774
Corpo A - S01 - Basamento	8,343	0,10	0,450	0,801
Corpo A - S01 - Basamento	8,329	0,10	0,450	0,800
Corpo A - S01 - Basamento	8,497	0,10	0,450	0,816
Corpo A - S01 - Basamento	8,477	0,10	0,450	0,814
Corpo A - S01 - Basamento	8,493	0,10	0,450	0,815
Corpo A - S01 - Basamento	8,529	0,10	0,450	0,819
Corpo A - S01 - Basamento	8,795	0,10	0,450	0,844
Corpo A - S01 - Basamento	8,732	0,10	0,450	0,838
Corpo A - S01 - Basamento	3,513	0,10	0,450	0,337
Corpo A - S01 - Basamento	3,522	0,10	0,450	0,338
Corpo A - S01 - Basamento	10,995	0,10	0,450	1,056
Corpo A - S01 - Basamento	10,172	0,10	0,450	0,977
Corpo A - S01 - Basamento	10,168	0,10	0,450	0,976
Corpo A - S01 - Basamento	10,166	0,10	0,450	0,976
Corpo A - S01 - Basamento	10,162	0,10	0,450	0,976
Corpo A - S01 - Basamento	10,174	0,10	0,450	0,977
Corpo A - S01 - Basamento	9,683	0,10	0,450	0,930
H ₀	690.921			66.338

Riscaldamento

Perdita di calore per trasmissione verso locali non riscaldati

Strutture verso il locale Ingresso

Struttura	A [m ²]	U [W/m²K]	H [W/K]
Corpo A - PE03 - Parete perimetrale verso locali non riscaldati	42,346	0,298	12,617
	42,346		12,617
Totale			12 617

Totale	12,617
b_{tr}	0,600
H _U Ingresso [W/K]	7,570

Strutture verso il locale Autorimessa

Struttura	A [m²]	U [W/m²K]	H [W/K]
Corpo A - PE03 - Parete perimetrale verso locali non riscaldati	9,017	0,298	2,687
	9,017		2,687

Totale	2,687
b _{tr}	0,800
Hu Autorimessa [W/K]	2,149

Strutture verso il locale Locale 4

Struttura	A [m ²]	U [W/m²K]	H [W/K]
Corpo A - PI01 - Parete interna verso locali tecnici	10,779	0,231	2,488
	10,779		2,488

Totale	2,488
b _{tr}	0,400
Hu Locale 4 [W/K]	0,995

Strutture verso il locale Locale 1

Struttura	A [m²]	U [W/m²K]	H [W/K]
Corpo A - Pl01 - Parete interna verso locali tecnici	172,354	0,231	39,783
	172,354		39,783

Totale	39,783
b _{tr}	0,832
Hu Locale 1 [W/K]	33,096

H _∪ [W/K]	43,811
----------------------	--------

Mese	gg	θ _{int,set,H} [°C]	θ _e [℃]	Δθ [℃]	H _{tr,adj} [W/K]	Fr*Φ _r [W]	Q _{sol,op} [kWh]	Q _{H,tr} [kWh]
Gennaio	31	20,0	-2,0	22,0	380,200	553,101	375,067	6 293,114
Febbraio	28	20,0	2,3	17,7	380,200	502,595	403,950	4 484,271
Marzo	31	20,0	6,5	13,5	380,200	618,097	642,992	3 672,134
Aprile	22	20,0	9,0	11,0	380,200	626,736	520,421	2 029,488
Ottobre	27	20,0	8,5	11,5	380,200	417,416	406,561	2 701,642
Novembre	30	20,0	3,3	16,7	380,200	492,663	311,381	4 644,664
Dicembre	31	20,0	-0,8	20,8	380,200	470,471	279,066	5 984,418
Totale								29 809,731

Legenda

A: area struttura

U: trasmittanza termica struttura

H: coefficiente di scambio termico

btr: fattore di correzione del locale

I: lunghezza ponte termico

ψ: trasmittanza termica lineica ponte termico

θ_{int,set,H}: temperatura interna di set-up nel periodo di riscaldamento θ_{int,set,C}: temperatura interna di set-up nel periodo di raffrescamento

 θ_e : temperatura esterna T_a : temperatura locale adiacente

H_{tr,adj}: coefficiente di scambio termico per trasmissione

Fr*Φ_r: extra flusso termico dovuto alla radiazione infrarossa verso la volta celeste

Q_{H,tr}: energia scambiata nel periodo di riscaldamento Q_{C,tr}: energia scambiata nel periodo di raffrescamento

P: perimetro pavimento esposto al terreno

Sw: spessore pareti perimetrali

dis: spessore isolante

λ_{is}: conduttività isolante

D: larghezza isolamento di bordo z: altezza pavimento dal terreno

Uw: trasmittanza pareti spazio areato

ε: area apertura di ventilazione

U_g: trasmittanza pavimento interrato

Perdita di calore per ventilazione

V [m³]	n [1/h]	q _{ve} [m³/h]	H [W/K]		
2 174,062	2,00	4 348,123	623,231		

Mese	gg	θ _{int,set,H} [°C]	θ _e [℃]	Δθ [℃]	H _{ve,adj} [W/K]	Q _{H,ve} [kWh]
Gennaio	31	20,0	-2,0	22,0	623,231	10 214,591
Febbraio	28	20,0	2,3	17,7	623,231	7 425,194
Marzo	31	20,0	6,5	13,5	623,231	6 273,278
Aprile	22	20,0	9,0	11,0	623,231	3 604,069
Ottobre	27	20,0	8,5	11,5	623,231	4 624,383
Novembre	30	20,0	3,3	16,7	623,231	7 506,838
Dicembre	31	20,0	-0,8	20,8	623,231	9 658,170
Totale						49 306,5

Apporti solari attraverso superfici trasparenti

Riscaldamento

F01 - 360x230 su Corpo A - PE02 - Parete perimetrale esterna (esposizione Sud)

Mese	gg	I _{sol} [W/m ²]	ggı	Fhor	F _{fin}	Fov	F _{sh,gl}	A _g [m ²]	A _{sol,w} [m ²]	Q _{sol,w,mn} [kWh]
Gennaio	31	221,2	0,292	1,000	1,000	0,864	1,000	6,334	1,847	262,485
Febbraio	28	178,5	0,281	1,000	1,000	0,797	1,000	6,334	1,780	170,328
Marzo	31	180,2	0,262	1,000	1,000	0,739	1,000	6,334	1,657	164,218
Aprile	22	141,4	0,239	1,000	1,000	0,647	1,000	6,334	1,513	73,079
Ottobre	27	168,7	0,275	1,000	1,000	0,785	1,000	6,334	1,739	149,268
Novembre	30	158,0	0,289	1,000	1,000	0,847	1,000	6,334	1,832	176,595
Dicembre	31	172,6	0,293	1,000	1,000	0,880	1,000	6,334	1,856	209,684
Totale		_								1 205,655

F01 - 360x230 su Corpo A - PE02 - Parete perimetrale esterna (esposizione Nord)

Mese	gg	I _{sol} [W/m ²]	ggı	F_{hor}	F_{fin}	F_{ov}	$F_{sh,gl}$	A _g [m ²]	A _{sol,w} [m ²]	Q _{sol,w,mn} [kWh]
Gennaio	31	17,0	0,264	1,000	1,000	0,751	1,000	6,334	1,672	15,905
Febbraio	28	28,2	0,264	1,000	1,000	0,751	1,000	6,334	1,672	23,845
Marzo	31	39,6	0,264	1,000	1,000	0,751	1,000	6,334	1,670	36,961
Aprile	22	58,7	0,260	1,000	1,000	0,757	1,000	6,334	1,649	38,725
Ottobre	27	29,0	0,263	1,000	1,000	0,751	1,000	6,334	1,668	23,564
Novembre	30	20,3	0,264	1,000	1,000	0,751	1,000	6,334	1,670	18,303
Dicembre	31	14,2	0,264	1,000	1,000	0,751	1,000	6,334	1,672	13,308
Totale										170,612

F03 - lucernario diam. 270 cm su Corpo A - S02 - Copertura (orizzontale)

Mese	gg	I _{sol} [W/m²]	ggı	F _{hor}	F _{fin}	Fον	$F_{sh,gl}$	A_g [m^2]	A _{sol,w} [m ²]	Q _{sol,w,mn} [kWh]
Gennaio	31	83,3	0,385	1,000	1,000	1,000	1,000	6,604	2,543	157,637
Febbraio	28	108,8	0,409	1,000	1,000	1,000	1,000	6,604	2,698	197,234
Marzo	31	164,4	0,436	1,000	1,000	1,000	1,000	6,604	2,876	351,676
Aprile	22	195,3	0,453	1,000	1,000	1,000	1,000	6,604	2,992	308,412
Ottobre	27	115,1	0,417	1,000	1,000	1,000	1,000	6,604	2,751	205,160
Novembre	30	75,2	0,388	1,000	1,000	1,000	1,000	6,604	2,562	138,794
Dicembre	31	61,3	0,372	1,000	1,000	1,000	1,000	6,604	2,457	112,121
Totale										1 471,034

Riepilogo

rticpilogo					
Mese	Q _{sol,w,mn} [kWh]	Q _{sd,w} [kWh]	Q _{sol,w} [kWh]		
Gennaio	436,027	0,000	436,027		
Febbraio	391,407	0,000	391,407		
Marzo	552,855	0,000	552,855		
Aprile	420,216	0,000	420,216		
Ottobre	377,992	0,000	377,992		
Novembre	333,692	0,000	333,692		
Dicembre	335,112	0,000	335,112		
Totale	2 847,302	0,000	2 847,302		

Legenda
ggı: trasmissione solare
F_{hor}: fattore di riduzione ombreggiatura dovuta ad ostruzioni
F_{fin}: fattore di riduzione ombreggiatura dovuta ad aggetti verticali
F_{ov}: fattore di riduzione ombreggiatura dovuta ad aggetti orizzontali
F_{sh,gl}: fattore di riduzione dovuto a tendaggi
A_g: area trasparente

A_{sol,w}: area equivalente

Asol,w. area equivalente

Q_{sol,w,mn}: apporti di energia termica dovuti alla radiazione solare incidente su componenti vetrati

Q_{sol,w}: apporti serra diretti attraverso le partizioni trasparenti

Q_{sol,w}: apporti di energia termica dovuti alla radiazione solare incidente su componenti vetrati comprensivi dei contributi serra

Apporti solari attraverso superfici opache

Riscaldamento

Corpo A - PE01 - Parete perimetrale controterra (esposizione Sud-Ovest)

Mese	gg	I _{sol} [W/m²gg]	F _{hor}	F _{fin}	F _{ov}	α_{sol}	A _c [m ²]	U _{c,eq} [W/m²K]	R _{se} [m²K/W]	A _{sol,op} [m²]	Q _{sol,op,mn} [kWh]
Gennaio	31	165,8	1,000	1,000	1,000	0,6	28,1	0,213	0,040	0,144	17,718
Febbraio	28	145,6	1,000	1,000	1,000	0,6	28,1	0,213	0,040	0,144	14,052
Marzo	31	167,6	1,000	1,000	1,000	0,6	28,1	0,213	0,040	0,144	17,916
Aprile	22	152,6	1,000	1,000	1,000	0,6	28,1	0,213	0,040	0,144	11,572
Ottobre	27	142,3	1,000	1,000	1,000	0,6	28,1	0,213	0,040	0,144	13,247
Novembre	30	122,0	1,000	1,000	1,000	0,6	28,1	0,213	0,040	0,144	12,622
Dicembre	31	128,2	1,000	1,000	1,000	0,6	28,1	0,213	0,040	0,144	13,700
Totale									-		100,826

Corpo A - PE02 - Parete perimetrale esterna (esposizione Sud)

Mese	gg	I _{sol} [W/m²gg]	Fhor	F _{fin}	Fov	α_{sol}	A _c [m ²]	U _{c,eq} [W/m²K]	R _{se} [m²K/W]	A _{sol,op} [m²]	Q _{sol,op,mn} [kWh]
Gennaio	31	221,2	1,000	1,000	1,000	0,6	21,1	0,165	0,040	0,084	13,768
Febbraio	28	178,5	1,000	1,000	1,000	0,6	21,1	0,165	0,040	0,084	10,036
Marzo	31	180,2	1,000	1,000	1,000	0,6	21,1	0,165	0,040	0,084	11,216
Aprile	22	141,4	1,000	1,000	1,000	0,6	21,1	0,165	0,040	0,084	6,246
Ottobre	27	168,7	1,000	1,000	1,000	0,6	21,1	0,165	0,040	0,084	9,146
Novembre	30	158,0	1,000	1,000	1,000	0,6	21,1	0,165	0,040	0,084	9,517
Dicembre	31	172,6	1,000	1,000	1,000	0,6	21,1	0,165	0,040	0,084	10,742
Totale										·	70,672

Corpo A - PE01 - Parete perimetrale controterra (esposizione Est)

Mese	99	I _{sol} [W/m²gg]	F _{hor}	F _{fin}	Fov	α_{sol}	A _c [m ²]	$U_{c,eq}$ [W/m ² K]	R _{se} [m²K/W]	A _{sol,op} [m²]	Q _{sol,op,mn} [kWh]
Gennaio	31	80,3	1,000	1,000	1,000	0,6	223,0	0,213	0,040	1,138	67,978
Febbraio	28	90,8	1,000	1,000	1,000	0,6	223,0	0,213	0,040	1,138	69,427
Marzo	31	127,2	1,000	1,000	1,000	0,6	223,0	0,213	0,040	1,138	107,761
Aprile	22	138,8	1,000	1,000	1,000	0,6	223,0	0,213	0,040	1,138	83,406
Ottobre	27	93,9	1,000	1,000	1,000	0,6	223,0	0,213	0,040	1,138	69,232
Novembre	30	66,3	1,000	1,000	1,000	0,6	223,0	0,213	0,040	1,138	54,331
Dicembre	31	59,4	1,000	1,000	1,000	0,6	223,0	0,213	0,040	1,138	50,279
Totale											502,414

Corpo A - PE02 - Parete perimetrale esterna (esposizione Nord)

Ourpo A - 1 Luz - 1 arete perimetrale esterna (espusizione Nord)											
Mese	99	I _{sol} [W/m²gg]	Fhor	F _{fin}	Fov	α_{sol}	A _c [m ²]	$U_{c,eq}$ [W/m ² K]	R _{se} [m²K/W]	A _{sol,op} [m²]	Q _{sol,op,mn} [kWh]
Gennaio	31	17,0	1,000	1,000	1,000	0,6	20,1	0,165	0,040	0,080	1,008
Febbraio	28	28,2	1,000	1,000	1,000	0,6	20,1	0,165	0,040	0,080	1,511
Marzo	31	39,6	1,000	1,000	1,000	0,6	20,1	0,165	0,040	0,080	2,345
Aprile	22	58,7	1,000	1,000	1,000	0,6	20,1	0,165	0,040	0,080	2,468
Ottobre	27	29,0	1,000	1,000	1,000	0,6	20,1	0,165	0,040	0,080	1,497
Novembre	30	20,3	1,000	1,000	1,000	0,6	20,1	0,165	0,040	0,080	1,161
Dicembre	31	14,2	1,000	1,000	1,000	0,6	20,1	0,165	0,040	0,080	0,844
Totale											10,835

Mese gg	I _{sol}	F _{hor} F	F _{fin} F _{ov}	α_{sol}	A_c [m ²]	$U_{c,eq}$	Rse	$A_{sol,op}$	Q _{sol,op,mn} [kWh]
---------	------------------	--------------------	----------------------------------	-----------------------	-------------------------	------------	-----	--------------	------------------------------

		[W/m ² gg]						[W/m ² K]	$[m^2K/W]$	[m²]	
Gennaio	31	83,3	1,000	1,000	1,000	0,6	687,7	0,217	0,040	3,578	221,845
Febbraio	28	108,8	1,000	1,000	1,000	0,6	687,7	0,217	0,040	3,578	261,602
Marzo	31	164,4	1,000	1,000	1,000	0,6	687,7	0,217	0,040	3,578	437,527
Aprile	22	195,3	1,000	1,000	1,000	0,6	687,7	0,217	0,040	3,578	368,879
Ottobre	27	115,1	1,000	1,000	1,000	0,6	687,7	0,217	0,040	3,578	266,887
Novembre	30	75,2	1,000	1,000	1,000	0,6	687,7	0,217	0,040	3,578	193,816
Dicembre	31	61,3	1,000	1,000	1,000	0,6	687,7	0,217	0,040	3,578	163,302
Totale											1 913,858

Corpo A - PE02 - Parete perimetrale esterna (esposizione Ovest)

Mese	99	I _{sol} [W/m²gg]	F _{hor}	F _{fin}	Fov	asol	A _c [m ²]	U _{c,eq} [W/m²K]	R _{se} [m²K/W]	A _{sol,op} [m²]	Q _{sol,op,mn} [kWh]
Gennaio	31	80,3	1,000	1,000	1,000	0,6	7,1	0,165	0,040	0,028	1,670
Febbraio	28	90,8	1,000	1,000	1,000	0,6	7,1	0,165	0,040	0,028	1,706
Marzo	31	127,2	1,000	1,000	1,000	0,6	7,1	0,165	0,040	0,028	2,648
Aprile	22	138,8	1,000	1,000	1,000	0,6	7,1	0,165	0,040	0,028	2,050
Ottobre	27	93,9	1,000	1,000	1,000	0,6	7,1	0,165	0,040	0,028	1,701
Novembre	30	66,3	1,000	1,000	1,000	0,6	7,1	0,165	0,040	0,028	1,335
Dicembre	31	59,4	1,000	1,000	1,000	0,6	7,1	0,165	0,040	0,028	1,236
Totale		<u> </u>									12,346

Corpo A - PE02 - Parete perimetrale esterna (esposizione Sud-Ovest)

Mese	99	I _{sol} [W/m²gg]	Fhor	F _{fin}	Fov	α_{sol}	A _c [m ²]	U _{c,eq} [W/m²K]	R _{se} [m²K/W]	A _{sol,op} [m²]	Q _{sol,op,mn} [kWh]
Gennaio	31	165,8	1,000	1,000	1,000	0,6	7,1	0,165	0,040	0,028	3,451
Febbraio	28	145,6	1,000	1,000	1,000	0,6	7,1	0,165	0,040	0,028	2,737
Marzo	31	167,6	1,000	1,000	1,000	0,6	7,1	0,165	0,040	0,028	3,490
Aprile	22	152,6	1,000	1,000	1,000	0,6	7,1	0,165	0,040	0,028	2,254
Ottobre	27	142,3	1,000	1,000	1,000	0,6	7,1	0,165	0,040	0,028	2,580
Novembre	30	122,0	1,000	1,000	1,000	0,6	7,1	0,165	0,040	0,028	2,459
Dicembre	31	128,2	1,000	1,000	1,000	0,6	7,1	0,165	0,040	0,028	2,669
Totale										·	19,641

Corpo A - PE02 - Parete perimetrale esterna (esposizione Sud-Est)

Mese	gg	I _{sol} [W/m²gg]	Fhor	F _{fin}	Fov	α_{sol}	A _c [m ²]	U _{c,eq} [W/m²K]	R _{se} [m²K/W]	A _{sol,op} [m²]	Q _{sol,op,mn} [kWh]
Gennaio	31	165,8	1,000	1,000	1,000	0,6	5,0	0,165	0,040	0,020	2,444
Febbraio	28	145,6	1,000	1,000	1,000	0,6	5,0	0,165	0,040	0,020	1,938
Marzo	31	167,6	1,000	1,000	1,000	0,6	5,0	0,165	0,040	0,020	2,471
Aprile	22	152,6	1,000	1,000	1,000	0,6	5,0	0,165	0,040	0,020	1,596
Ottobre	27	142,3	1,000	1,000	1,000	0,6	5,0	0,165	0,040	0,020	1,827
Novembre	30	122,0	1,000	1,000	1,000	0,6	5,0	0,165	0,040	0,020	1,741
Dicembre	31	128,2	1,000	1,000	1,000	0,6	5,0	0,165	0,040	0,020	1,890
Totale											13,907

Corpo A - PE02 - Parete perimetrale esterna (esposizione Est)

Mese	gg	I _{sol} [W/m²gg]	Fhor	F _{fin}	Fov	asol	A _c [m ²]	U _{c,eq} [W/m²K]	R _{se} [m²K/W]	A _{sol,op} [m²]	Q _{sol,op,mn} [kWh]
Gennaio	31	80,3	1,000	1,000	1,000	0,6	15,6	0,165	0,040	0,062	3,706
Febbraio	28	90,8	1,000	1,000	1,000	0,6	15,6	0,165	0,040	0,062	3,785
Marzo	31	127,2	1,000	1,000	1,000	0,6	15,6	0,165	0,040	0,062	5,876
Aprile	22	138,8	1,000	1,000	1,000	0,6	15,6	0,165	0,040	0,062	4,548
Ottobre	27	93,9	1,000	1,000	1,000	0,6	15,6	0,165	0,040	0,062	3,775
Novembre	30	66,3	1,000	1,000	1,000	0,6	15,6	0,165	0,040	0,062	2,962
Dicembre	31	59,4	1,000	1,000	1,000	0,6	15,6	0,165	0,040	0,062	2,741
Totale											27,394

Corpo A - PE02 - Parete perimetrale esterna (esposizione Nord-Est)

Mese	gg	I _{sol} [W/m²gg]	F _{hor}	F _{fin}	Fov	α_{sol}	A _c [m ²]	$U_{c,eq}$ [W/m ² K]	R _{se} [m²K/W]	A _{sol,op} [m²]	Q _{sol,op,mn} [kWh]
Gennaio	31	21,4	1,000	1,000	1,000	0,6	6,8	0,165	0,040	0,027	0,428
Febbraio	28	39,3	1,000	1,000	1,000	0,6	6,8	0,165	0,040	0,027	0,710
Marzo	31	68,2	1,000	1,000	1,000	0,6	6,8	0,165	0,040	0,027	1,364
Aprile	22	94,1	1,000	1,000	1,000	0,6	6,8	0,165	0,040	0,027	1,335
Ottobre	27	43,5	1,000	1,000	1,000	0,6	6,8	0,165	0,040	0,027	0,758
Novembre	30	24,6	1,000	1,000	1,000	0,6	6,8	0,165	0,040	0,027	0,477
Dicembre	31	16,2	1,000	1,000	1,000	0,6	6,8	0,165	0,040	0,027	0,324
Totale											5,395

Corpo A - PE02 - Parete perimetrale esterna (esposizione Nord-Ovest)

respect 1 Let 1 diete perimetiale determa (dependicine treta di det)											
Mese	99	I _{sol} [W/m²gg]	F _{hor}	F _{fin}	Fov	α_{sol}	A _c [m ²]	$U_{c,eq}$ [W/m ² K]	R _{se} [m²K/W]	A _{sol,op} [m²]	Q _{sol,op,mn} [kWh]
Gennaio	31	21,4	1,000	1,000	1,000	0,6	6,9	0,165	0,040	0,027	0,437
Febbraio	28	39,3	1,000	1,000	1,000	0,6	6,9	0,165	0,040	0,027	0,725
Marzo	31	68,2	1,000	1,000	1,000	0,6	6,9	0,165	0,040	0,027	1,393
Aprile	22	94,1	1,000	1,000	1,000	0,6	6,9	0,165	0,040	0,027	1,364
Ottobre	27	43,5	1,000	1,000	1,000	0,6	6,9	0,165	0,040	0,027	0,774
Novembre	30	24,6	1,000	1,000	1,000	0,6	6,9	0,165	0,040	0,027	0,487
Dicembre	31	16,2	1,000	1,000	1,000	0,6	6,9	0,165	0,040	0,027	0,331
Totale											5,512

Riepilogo

Mese	Q _{sol,op,mn} [kWh]	Q _{sol,mn,u} [kWh]	Q _{sd,op} [kWh]	Q _{si} [kWh]	Q _{sol,op} [kWh]
Gennaio	334,455	40,613	0,000	0,000	375,067
Febbraio	368,231	35,719	0,000	0,000	403,950
Marzo	594,008	48,984	0,000	0,000	642,992
Aprile	485,717	34,704	0,000	0,000	520,421
Ottobre	371,425	35,136	0,000	0,000	406,561
Novembre	280,908	30,472	0,000	0,000	311,381
Dicembre	248,058	31,008	0,000	0,000	279,066
Totale	2 682,802	256,636	0,000	0,000	2 939,438

Legenda

 F_{hor} : fattore di riduzione ombreggiatura dovuta ad ostruzioni F_{fin} : fattore di riduzione ombreggiatura dovuta ad aggetti orizzontali F_{ov} : fattore di riduzione ombreggiatura dovuta ad aggetti verticali α_{sol} : coefficiente di assorbimento della radiazione solare

A_c: area della struttura

 $U_{c,eq}$: trasmittanza termica della struttura

 $R_{\text{se}}.$ Resistenza superficiale esterna della struttura

A_{sol,op}: area equivalente

 $Q_{sol,op,mn}$: apporti di energia termica dovuti alla radiazione solare incidente su componenti opachi $Q_{sol,mn,u}$: apporti di energia termica dovuti alla radiazione solare negli ambienti non climatizzati adiacenti

Q_{sd,op}: apporti serra diretti attraverso le partizioni opache

 Q_{si} : apporti serra indiretti attraverso le partizioni opache e trasparenti $Q_{sol,op}$: apporti di energia termica dovuti alla radiazione solare incidente su componenti opachi comprensivi degli apporti serra e degli apporti degli ambienti non climatizzati adiacenti

Fabbisogno energetico utile

Riscaldamento

Mese	Q _{H,tr} [kWh]	Q _{H,ve} [kWh]	Q _{int} [kWh]	Q _{sol,w} [kWh]	γн	$\eta_{H,gn}$	Q _{H,nd} [kWh]
Gennaio	6 293,1	10 214,6	1 794,1	436,0	0,135	1,000	14 277,6
Febbraio	4 484,3	7 425,2	1 620,5	391,4	0,169	1,000	9 897,6
Marzo	3 672,1	6 273,3	1 794,1	552,9	0,236	1,000	7 598,6
Aprile	2 029,5	3 604,1	1 273,3	420,2	0,301	1,000	3 940,5
Ottobre	2 701,6	4 624,4	1 562,6	378,0	0,265	1,000	5 385,6
Novembre	4 644,7	7 506,8	1 736,3	333,7	0,170	1,000	10 081,6
Dicembre	5 984,4	9 658,2	1 794,1	335,1	0,136	1,000	13 513,4
Totale							64 694,8

Acqua calda sanitaria

Mese	gg	V _w [I]	θ _{er} [℃]	θ₀ [℃]	$Q_{W,nd}$
Gennaio	31	1 000,00	9,25	40,00	1 107,83
Febbraio	28	1 000,00	9,25	40,00	1 000,62
Marzo	31	1 000,00	9,25	40,00	1 107,83
Aprile	30	1 000,00	9,25	40,00	1 072,09
Maggio	31	1 000,00	9,25	40,00	1 107,83
Giugno	30	1 000,00	9,25	40,00	1 072,09
Luglio	31	1 000,00	9,25	40,00	1 107,83
Agosto	31	1 000,00	9,25	40,00	1 107,83
Settembre	30	1 000,00	9,25	40,00	1 072,09
Ottobre	31	1 000,00	9,25	40,00	1 107,83
Novembre	30	1 000,00	9,25	40,00	1 072,09
Dicembre	31	1 000,00	9,25	40,00	1 107,83
Totale					13 043,78

Fabbisogno energia primaria per il riscaldamento della zona

Mese	Q _{H,nd} [kWh]	Q'н[kWh]	η _e [%]	ης [%]	η _d [%]	η _{gn} [%]	η _g [%]	Q _{pnren,H} [kWh]	Q _{pren,H} [kWh]	Q _{ptot,H} [kWh]
Gennaio	4 063,0	4 063,0	99,0	97,0	14,3	106,3	13,2	30 513,8	265,0	30 778,8
Febbraio	2 472,4	2 472,4	99,0	97,0	12,2	106,5	11,1	21 961,9	230,5	22 192,4
Marzo	1 325,9	1 325,9	99,0	97,0	8,3	106,8	7,4	17 588,6	243,1	17 831,7
Aprile	345,9	345,9	99,0	97,0	4,0	107,6	3,5	9 631,1	157,6	9 788,8
Ottobre	725,5	725,5	99,0	97,0	7,6	107,5	6,7	10 639,8	166,3	10 806,2
Novembre	2 574,7	2 574,7	99,0	97,0	12,4	106,6	11,3	22 608,1	246,2	22 854,3
Dicembre	3 855,2	3 855,2	99,0	97,0	14,2	106,4	13,1	29 239,1	263,6	29 502,7
Totale	15 362,5	15 362,5	99,0	97,0	11,8	106,6	10,7	142 182,4	1 572,4	143 754,8

Fabbisogno energia primaria per l'acqua calda sanitaria della zona

Mese	Qw,nd [kWh]	η _{er} [%]	ղժ [%]	η _{gn} [%]	η _g [%]	Q _{pnren,W} [kWh]	Q _{pren,W} [kWh]	Q _{ptot,W} [kWh]
Gennaio	1 107,8	100,0	92,3	106,3	76,9	1 393,5	47,6	1 441,1
Febbraio	1 000,6	100,0	92,6	106,5	77,0	1 255,7	43,0	1 298,7
Marzo	1 107,8	100,0	92,9	106,8	77,2	1 387,2	47,6	1 434,8
Aprile	1 072,1	100,0	93,0	107,6	77,2	1 342,2	46,2	1 388,4
Maggio	1 107,8	100,0	93,4	105,9	67,8	1 584,3	49,5	1 633,8
Giugno	1 072,1	100,0	93,6	105,9	68,5	1 517,2	47,8	1 565,0
Luglio	1 107,8	100,0	93,6	105,9	68,7	1 563,2	49,4	1 612,6
Agosto	1 107,8	100,0	93,6	105,9	68,7	1 564,2	49,4	1 613,6
Settembre	1 072,1	100,0	93,4	105,9	68,0	1 527,9	47,9	1 575,7
Ottobre	1 107,8	100,0	93,0	107,5	77,2	1 387,1	47,7	1 434,8
Novembre	1 072,1	100,0	92,7	106,6	77,1	1 344,6	46,1	1 390,7
Dicembre	1 107,8	100,0	92,4	106,4	76,9	1 392,5	47,6	1 440,2
Totale	13 043,8	100,0	93,0	106,4	73,2	17 259,7	569,8	17 829,5

Legenda

Q_{H,tr}: energia scambiata per trasmissione Q_{H,ve}: energia scambiata per ventilazione Q_{int}: energia da apporti gratuiti interni

Q_{sol,w}: energia da apporti solari interni (superfici trasparenti)

γ: rapporto tra apporti interni e energia scambiata per trasmissione e ventilazione

μ: fattore di utilizzazione degli apporti gratuiti

Q_{H,nd}: fabbisogno energetico utile per il riscaldamento

Q_{C,nd}: fabbisogno energetico utile per il raffrescamento

Q_{W,nd}: fabbisogno energetico utile per l'acqua calda sanitaria

Q'_H: fabbisogno energetico utile per il riscaldamento al netto dei recuperi

Q_{C,nd}: fabbisogno energetico utile per il raffrescamento

η_e: rendimento di emissione η_c: rendimento di regolazione η_d: rendimento di distribuzione $\stackrel{\cdot}{\eta_{gn}}$: rendimento di generazione η_g : rendimento globale Q_p : fabbisogno di energia primaria

Corpo A - Zona laboratori ski room

Perdita di calore per trasmissione

Perdite di calore per trasmissione verso l'esterno

Strutture Esterne

Struttura	Esposizione	A [m²]	U [W/m²K]	H [W/K]
Corpo A - PE02 - Parete perimetrale esterna	Nord-Est	5,116	0,165	0,845
Corpo A - PE02 - Parete perimetrale esterna	Est	6,589	0,165	1,089
Corpo A - S01 - Basamento	Orizzontale	170,357	0,213	36,348
Corpo A - S02 - Copertura	Orizzontale	654,316	0,217	141,858
F02 - 180x230	Nord-Est	4,140	0,964	3,991
Totale		840,518		184,131

Ponte termico	Esposizione	l [m]	ψ [W/mK]	H [W/K]
Ponte termico serramenti	Nord-Est	8,200	0,220	1,804
Ponte termico parete esterna-copertura	Est	2,000	0,439	0,878
Totale				2,682

Hp	186,813	
טוין	100,010	

Perdite di calore per trasmissione verso il terreno

Struttura	A [m²]	U [W/m²K]	b _{tr}	H [W/K]
Corpo A - S01 - Basamento	19,022	0,10	0,450	1,826
Corpo A - S01 - Basamento	18,910	0,10	0,450	1,816
Corpo A - S01 - Basamento	19,097	0,10	0,450	1,834
Corpo A - S01 - Basamento	19,382	0,10	0,450	1,861
Corpo A - S01 - Basamento	19,938	0,10	0,450	1,914
Corpo A - S01 - Basamento	19,893	0,10	0,450	1,910
Corpo A - S01 - Basamento	21,970	0,10	0,450	2,109
Corpo A - S01 - Basamento	6,798	0,10	0,450	0,653
Corpo A - S01 - Basamento	4,887	0,10	0,450	0,469
Corpo A - S01 - Basamento	18,880	0,10	0,450	1,813
Corpo A - S01 - Basamento	18,599	0,10	0,450	1,786
Corpo A - S01 - Basamento	18,710	0,10	0,450	1,796
Corpo A - S01 - Basamento	18,413	0,10	0,450	1,768
Corpo A - S01 - Basamento	17,687	0,10	0,450	1,698
Corpo A - S01 - Basamento	11,284	0,10	0,450	1,083
Corpo A - S01 - Basamento	18,295	0,10	0,450	1,757
Corpo A - S01 - Basamento	17,878	0,10	0,450	1,717
Corpo A - S01 - Basamento	17,818	0,10	0,450	1,711
Corpo A - S01 - Basamento	17,878	0,10	0,450	1,717
Corpo A - S01 - Basamento	17,842	0,10	0,450	1,713
Corpo A - S01 - Basamento	5,828	0,10	0,450	0,560
Corpo A - S01 - Basamento	7,041	0,10	0,450	0,676
Corpo A - S01 - Basamento	5,733	0,10	0,450	0,550
Corpo A - S01 - Basamento	2,707	0,10	0,450	0,260
Corpo A - S01 - Basamento	3,142	0,10	0,450	0,302
Corpo A - S01 - Basamento	18,224	0,10	0,450	1,750
Corpo A - S01 - Basamento	14,632	0,10	0,450	1,405
Corpo A - S01 - Basamento	22,838	0,10	0,450	2,193
Corpo A - S01 - Basamento	25,352	0,10	0,450	2,434
Corpo A - S01 - Basamento	35,294	0,10	0,450	3,389
H _g	483,971			46,468

Riscaldamento

Perdita di calore per trasmissione verso locali non riscaldati

Strutture verso il locale Autorimessa

Struttura	A [m²]	U [W/m²K]	H [W/K]
Corpo A - PE03 - Parete perimetrale verso locali non riscaldati	138,058	0,298	41,135
	138,058		41,135
Totale			41.135

b _{tr}	0,800
H _U Autorimessa [W/K]	32,908

Strutture verso il locale Locale 2

Struttura	A [m ²]	U [W/m ² K]	H [W/K]
Corpo A - PE03 - Parete perimetrale verso locali non riscaldati	61,378	0,298	18,288
	61,378		18,288

Totale	18,288
b _{tr}	0,832
Hu Locale 2 [W/K]	15,214

Strutture verso il locale Locale 3

Struttura	A [m ²]	U [W/m²K]	H [W/K]
Corpo A - PE03 - Parete perimetrale verso locali non riscaldati	23,318	0,298	6,948
	23,318		6,948

Totale	6,948
b _{tr}	0,832
H _U Locale 3 [W/K]	5,780

H _U [W/K]	53,902
----------------------	--------

Mese	gg	θ _{int,set,H} [℃]	θ _e [℃]	Δθ [℃]	$H_{tr,adj}[W/K]$	Fr*Ф _r [W]	Q _{sol,op} [kWh]	Q _{H,tr} [kWh]
Gennaio	31	20,0	-2,0	22,0	287,183	429,750	240,381	4 803,275
Febbraio	28	20,0	2,3	17,7	287,183	390,508	275,153	3 422,785
Marzo	31	20,0	6,5	13,5	287,183	480,251	452,872	2 814,219
Aprile	22	20,0	9,0	11,0	287,183	486,963	377,334	1 554,255
Ottobre	27	20,0	8,5	11,5	287,183	324,325	279,820	2 072,465
Novembre	30	20,0	3,3	16,7	287,183	382,790	206,591	3 542,861
Dicembre	31	20,0	-0,8	20,8	287,183	365,548	177,711	4 559,232
Totale								22 769,093

Legenda

A: area struttura

U: trasmittanza termica struttura

H: coefficiente di scambio termico

btr: fattore di correzione del locale

I: lunghezza ponte termico

ψ: trasmittanza termica lineica ponte termico

 $\theta_{\text{int,set,H}}$: temperatura interna di set-up nel periodo di riscaldamento $\theta_{\text{int,set,C}}$: temperatura interna di set-up nel periodo di raffrescamento

θ_e: temperatura esterna

Ta: temperatura locale adiacente

H_{tr,adj}: coefficiente di scambio termico per trasmissione

Fr*Φ_r: extra flusso termico dovuto alla radiazione infrarossa verso la volta celeste

Q_{H,tr}: energia scambiata nel periodo di riscaldamento Q_{C,tr}: energia scambiata nel periodo di raffrescamento P: perimetro pavimento esposto al terreno

S_w: spessore pareti perimetrali

dis: spessore isolante

λ_{is}: conduttività isolante

D: larghezza isolamento di bordo

z: altezza pavimento dal terreno

Uw: trasmittanza pareti spazio areato

ε: area apertura di ventilazione

U_g: trasmittanza pavimento interrato

Perdita di calore per ventilazione

V [m³]	n [1/h]	q _{ve} [m³/h]	H [W/K]		
1 980,477	9,00	17 824,297	2 554,816		

Mese	gg	θ _{int,set,H} [°C]	θ _e [℃]	Δθ [℃]	H _{ve,adj} [W/K]	Q _{H,ve} [kWh]
Gennaio	31	20,0	-2,0	22,0	2 554,816	41 872,755
Febbraio	Febbraio 28		2,3	17,7	2 554,816	30 438,157
Marzo	31	20,0	6,5	13,5	2 554,816	25 716,099
Aprile	22	20,0	9,0	11,0	2 554,816	14 774,188
Ottobre	27	20,0	8,5	11,5	2 554,816	18 956,770
Novembre	30	20,0	3,3	16,7	2 554,816	30 772,843
Dicembre	31	20,0	-0,8	20,8	2 554,816	39 591,815
Totale						202 122,6

Apporti solari attraverso superfici trasparenti

Riscaldamento

F02 - 180x230 su Corpo A - PE02 - Parete perimetrale esterna (esposizione Nord-Est)

Mese	gg	I _{sol} [W/m ²]	ggı	Fhor	F _{fin}	Fov	$F_{sh,gl}$	A _g [m ²]	A _{sol,w} [m ²]	Q _{sol,w,mn} [kWh]
Gennaio	31	21,4	0,428	1,000	1,000	0,819	1,000	3,167	1,356	17,681
Febbraio	28	39,3	0,437	1,000	1,000	0,788	1,000	3,167	1,384	28,803
Marzo	31	68,2	0,441	1,000	1,000	0,786	1,000	3,167	1,396	55,664
Aprile	22	94,1	0,441	1,000	1,000	0,771	1,000	3,167	1,395	53,417
Ottobre	27	43,5	0,438	1,000	1,000	0,800	1,000	3,167	1,386	31,253
Novembre	30	24,6	0,433	1,000	1,000	0,812	1,000	3,167	1,370	19,724
Dicembre	31	16,2	0,429	1,000	1,000	0,829	1,000	3,167	1,357	13,568
Totale										220,110

Riepilogo

Mese	Q _{sol,w,mn} [kWh]	$Q_{sd,w}$ [kWh]	Q _{sol,w} [kWh]
Gennaio	17,681	0,000	17,681
Febbraio	28,803	0,000	28,803
Marzo	55,664	0,000	55,664
Aprile	53,417	0,000	53,417
Ottobre	31,253	0,000	31,253
Novembre	19,724	0,000	19,724
Dicembre	13,568	0,000	13,568
Totale	220,110	0,000	220,110

Legenda

ggi: trasmissione solare

Fhor: fattore di riduzione ombreggiatura dovuta ad ostruzioni

Ffin: fattore di riduzione ombreggiatura dovuta ad aggetti verticali

Fov: fattore di riduzione ombreggiatura dovuta ad aggetti orizzontali

F_{sh,gl}: fattore di riduzione dovuto a tendaggi

A_g: area trasparente A_{sol,w}: area equivalente

Q_{sol,w,mn}: apporti di energia termica dovuti alla radiazione solare incidente su componenti vetrati

Q_{sd,w}: apporti di energia termica devuti alla radiazione solare incidente su componenti vetrati comprensivi dei contributi serra Q_{sd,w}: apporti di energia termica dovuti alla radiazione solare incidente su componenti vetrati comprensivi dei contributi serra

Apporti solari attraverso superfici opache

Riscaldamento

Corpo A - S02 - Copertura (orizzontale)

Mese	99	I _{sol} [W/m²gg]	F _{hor}	F _{fin}	Fov	α_{sol}	A _c [m ²]	U _{c,eq} [W/m²K]	R _{se} [m²K/W]	A _{sol,op} [m²]	Q _{sol,op,mn} [kWh]
Gennaio	31	83,3	1,000	1,000	1,000	0,6	654,3	0,217	0,040	3,405	211,084
Febbraio	28	108,8	1,000	1,000	1,000	0,6	654,3	0,217	0,040	3,405	248,913
Marzo	31	164,4	1,000	1,000	1,000	0,6	654,3	0,217	0,040	3,405	416,305
Aprile	22	195,3	1,000	1,000	1,000	0,6	654,3	0,217	0,040	3,405	350,987
Ottobre	27	115,1	1,000	1,000	1,000	0,6	654,3	0,217	0,040	3,405	253,942
Novembre	30	75,2	1,000	1,000	1,000	0,6	654,3	0,217	0,040	3,405	184,415
Dicembre	31	61,3	1,000	1,000	1,000	0,6	654,3	0,217	0,040	3,405	155,382
Totale											1 821,029

Corpo A - PE02 - Parete perimetrale esterna (esposizione Est)

Mese	99	I _{sol} [W/m²gg]	F _{hor}	F _{fin}	Fov	α _{sol}	A _c [m ²]	U _{c,eq} [W/m²K]	R _{se} [m²K/W]	A _{sol,op} [m²]	Q _{sol,op,mn} [kWh]
Gennaio	31	80,3	1,000	1,000	1,000	0,6	6,6	0,165	0,040	0,026	1,561
Febbraio	28	90,8	1,000	1,000	1,000	0,6	6,6	0,165	0,040	0,026	1,594
Marzo	31	127,2	1,000	1,000	1,000	0,6	6,6	0,165	0,040	0,026	2,474
Aprile	22	138,8	1,000	1,000	1,000	0,6	6,6	0,165	0,040	0,026	1,915
Ottobre	27	93,9	1,000	1,000	1,000	0,6	6,6	0,165	0,040	0,026	1,589
Novembre	30	66,3	1,000	1,000	1,000	0,6	6,6	0,165	0,040	0,026	1,247
Dicembre	31	59,4	1,000	1,000	1,000	0,6	6,6	0,165	0,040	0,026	1,154
Totale								•			11,535

Corpo A - PE02 - Parete perimetrale esterna (esposizione Nord-Est)

00/p0/1 / 202 /	u. oto	pormienare	001011	.a (00p	00.2.0.	10 1101	<u> </u>				
Mese	99	I _{sol} [W/m²gg]	F _{hor}	F _{fin}	Fov	α_{sol}	A _c [m ²]	U _{c,eq} [W/m²K]	R _{se} [m²K/W]	A _{sol,op} [m²]	Q _{sol,op,mn} [kWh]
Gennaio	31	21,4	1,000	1,000	1,000	0,6	5,1	0,165	0,040	0,020	0,323
Febbraio	28	39,3	1,000	1,000	1,000	0,6	5,1	0,165	0,040	0,020	0,536
Marzo	31	68,2	1,000	1,000	1,000	0,6	5,1	0,165	0,040	0,020	1,030
Aprile	22	94,1	1,000	1,000	1,000	0,6	5,1	0,165	0,040	0,020	1,008
Ottobre	27	43,5	1,000	1,000	1,000	0,6	5,1	0,165	0,040	0,020	0,572
Novembre	30	24,6	1,000	1,000	1,000	0,6	5,1	0,165	0,040	0,020	0,360
Dicembre	31	16,2	1,000	1,000	1,000	0,6	5,1	0,165	0,040	0,020	0,245
Totale											4,074

Riepilogo

Mese	Q _{sol,op,mn} [kWh]	Q _{sol,mn,u} [kWh]	Q _{sd,op} [kWh]	Q _{si} [kWh]	Q _{sol,op} [kWh]
Gennaio	212,968	27,413	0,000	0,000	240,381
Febbraio	251,043	24,110	0,000	0,000	275,153
Marzo	419,809	33,063	0,000	0,000	452,872
Aprile	353,909	23,425	0,000	0,000	377,334
Ottobre	256,104	23,716	0,000	0,000	279,820
Novembre	186,023	20,568	0,000	0,000	206,591
Dicembre	156,781	20,930	0,000	0,000	177,711
Totale	1 836,638	173,224	0,000	0,000	2 009,862

Legenda

 F_{hor} : fattore di riduzione ombreggiatura dovuta ad ostruzioni F_{fin} : fattore di riduzione ombreggiatura dovuta ad aggetti orizzontali F_{ov} : fattore di riduzione ombreggiatura dovuta ad aggetti verticali α_{sol} : coefficiente di assorbimento della radiazione solare

Ac: area della struttura

U_{c,eq}: trasmittanza termica della struttura

 R_{se} : Resistenza superficiale esterna della struttura $A_{sol,op}$: area equivalente

Asol,op: area equivalente
Qsol,op,mn: apporti di energia termica dovuti alla radiazione solare incidente su componenti opachi
Qsol,nn,u: apporti di energia termica dovuti alla radiazione solare negli ambienti non climatizzati adiacenti
Qsd,op: apporti serra diretti attraverso le partizioni opache
Qsi: apporti serra indiretti attraverso le partizioni opache e trasparenti
Qsol,op: apporti di energia termica dovuti alla radiazione solare incidente su componenti opachi comprensivi degli apporti serra e degli apporti degli ambienti non climatizzati adiacenti

Fabbisogno energetico utile

Riscaldamento

Mese	Q _{H,tr} [kWh]	Q _{H,ve} [kWh]	Q _{int} [kWh]	Q _{sol,w} [kWh]	γн	η _{H,gn}	Q _{H,nd} [kWh]
Gennaio	4 803,3	41 872,8	1 670,1	17,7	0,036	1,000	44 988,5
Febbraio	3 422,8	30 438,2	1 508,5	28,8	0,045	1,000	32 324,2
Marzo	2 814,2	25 716,1	1 670,1	55,7	0,060	0,999	26 805,8
Aprile	1 554,3	14 774,2	1 185,3	53,4	0,076	0,999	15 091,3
Ottobre	2 072,5	18 956,8	1 454,6	31,3	0,071	0,999	19 544,9
Novembre	3 542,9	30 772,8	1 616,3	19,7	0,048	1,000	32 680,4
Dicembre	4 559,2	39 591,8	1 670,1	13,6	0,038	1,000	42 467,7
Totale							213 902,8

Fabbisogno energia primaria per il riscaldamento della zona

Mese	Q _{H,nd} [kWh]	Q'н[kWh]	η _e [%]	ης [%]	η _d [%]	η _{gn} [%]	ηց [%]	Q _{pnren,H} [kWh]	Q _{pren,H} [kWh]	Q _{ptot,H} [kWh]
Gennaio	3 115,5	3 115,5	99,0	97,0	14,6	106,3	13,3	23 096,9	240,0	23 336,9
Febbraio	1 885,5	1 885,5	99,0	97,0	12,6	106,5	11,4	16 372,4	209,0	16 581,4
Marzo	1 088,6	1 088,6	99,0	97,0	8,8	106,8	7,7	13 827,1	225,5	14 052,7
Aprile	321,8	321,8	99,0	97,0	4,9	107,6	4,2	7 540,6	156,3	7 696,8
Ottobre	562,7	562,7	99,0	97,0	8,6	107,5	7,4	7 482,6	154,4	7 637,1
Novembre	1 906,9	1 906,9	99,0	97,0	12,9	106,6	11,5	16 307,1	221,2	16 528,3
Dicembre	2 875,5	2 875,5	99,0	97,0	14,6	106,4	13,2	21 472,5	236,6	21 709,2
Totale	11 756,4	11 756,4	99,0	97,0	12,2	106,6	10,9	106 099,2	1 443,1	107 542,3

Legenda

Q_{H,tr}: energia scambiata per trasmissione Q_{H,ve}: energia scambiata per ventilazione Qint: energia da apporti gratuiti interni

Q_{sol,w}: energia da apporti solari interni (superfici trasparenti)

 γ : rapporto tra apporti interni e energia scambiata per trasmissione e ventilazione μ : fattore di utilizzazione degli apporti gratuiti

Q_{H,nd}: fabbisogno energetico utile per il riscaldamento Q_{C,nd}: fabbisogno energetico utile per il raffrescamento Q_{W,nd}: fabbisogno energetico utile per l'acqua calda sanitaria

Q'H: fabbisogno energetico utile per il riscaldamento al netto dei recuperi

Q_{C,nd}: fabbisogno energetico utile per il raffrescamento

η_e: rendimento di emissione η_c : rendimento di regolazione η_d: rendimento di distribuzione ηgn: rendimento di generazione

 η_g : rendimento globale Q_p : fabbisogno di energia primaria

Corpo A Fabbisogno di energia primaria per il riscaldamento

Mese	Q _{H,nd} [kWh]	Q'н [kWh]	η _e [%]	ης [%]	ղս [%]	η _{gn} [%]	ηց [%]	$Q_{p,nren,H}$ [kWh]	$Q_{p,ren,H}$ [kWh]	$Q_{p,tot,H}$ [kWh]
Gennaio	7 178,4	7 178,4	99,0	97,0	14,5	106,3	13,3	53 610,7	505,0	54 115,7
Febbraio	4 357,8	4 357,8	99,0	97,0	12,4	106,5	11,2	38 334,3	439,6	38 773,8
Marzo	2 414,5	2 414,5	99,0	97,0	8,5	106,8	7,6	31 415,7	468,6	31 884,3
Aprile	667,7	667,7	99,0	97,0	4,4	107,6	3,8	17 171,7	313,9	17 485,6
Ottobre	1 288,2	1 288,2	99,0	97,0	8,0	107,5	7,0	18 122,5	320,8	18 443,2
Novembre	4 481,6	4 481,6	99,0	97,0	12,6	106,6	11,4	38 915,2	467,5	39 382,6
Dicembre	6 730,7	6 730,7	99,0	97,0	14,4	106,4	13,1	50 711,6	500,3	51 211,8
Totale	27 118,9	27 118,9	99,0	97,0	11,9	106,6	10,8	248 281,6	3 015,6	251 297,2

Fabbisogno di energia primaria per il raffrescamento

Mese	Q _{C,nd} [kWh]	η _e [%]	ης [%]	ղժ [%]	ղցո [%]	η _g [%]	Q _{p,nren,C} [kWh]	Q _{p,ren,C} [kWh]	Q _{p,tot,C} [kWh]
Maggio	12,9	100,0					0,0	0,0	0,0
Giugno	768,2	100,0					0,0	0,0	0,0
Luglio	1 257,7	100,0					0,0	0,0	0,0
Agosto	985,9	100,0					0,0	0,0	0,0
Settembre	29,6	100,0					0,0	0,0	0,0
Totale	3 054,2	100,0					0,0	0,0	0,0

Fabbisogno di energia primaria per l'acqua calda sanitaria

Mese	Q _{W, nd} [kWh]	η _{er} [%]	ղժ [%]	η _{gn} [%]	η _g [%]	$Q_{p,nren,W}$ [kWh]	$Q_{p,ren,W}$ [kWh]	$Q_{p,tot,W}$ [kWh]
Gennaio	1 107,8	100,0	92,3	106,3	76,9	1 393,5	47,6	1 441,1
Febbraio	1 000,6	100,0	92,6	106,5	77,0	1 255,7	43,0	1 298,7
Marzo	1 107,8	100,0	92,9	106,8	77,2	1 387,2	47,6	1 434,8
Aprile	1 072,1	100,0	93,0	107,6	77,2	1 342,2	46,2	1 388,4
Maggio	1 107,8	100,0	93,4	105,9	67,8	1 584,3	49,5	1 633,8
Giugno	1 072,1	100,0	93,6	105,9	68,5	1 517,2	47,8	1 565,0
Luglio	1 107,8	100,0	93,6	105,9	68,7	1 563,2	49,4	1 612,6
Agosto	1 107,8	100,0	93,6	105,9	68,7	1 564,2	49,4	1 613,6
Settembre	1 072,1	100,0	93,4	105,9	68,0	1 527,9	47,9	1 575,7
Ottobre	1 107,8	100,0	93,0	107,5	77,2	1 387,1	47,7	1 434,8
Novembre	1 072,1	100,0	92,7	106,6	77,1	1 344,6	46,1	1 390,7
Dicembre	1 107,8	100,0	92,4	106,4	76,9	1 392,5	47,6	1 440,2
Totale	13 043,8	100,0	93,0	106,4	73,2	17 259,7	569,8	17 829,5

Fabbisogno di energia elettrica per l'illuminazione

Corpo A - Zona lounge e spogliatoi

Fabbisogno energetico di illuminazione artificiale Qa [kWh]

Locale	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC	Anno
Locale 6	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 37	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 38	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 39	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 40	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 41	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 42	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 43	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 44	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 45	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 46	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 47	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 48	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 49	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 50	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 51	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 52	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 53	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 54	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 55	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 56	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 57	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 58	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 59	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 60	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 61	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 62	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 63	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 64	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Totale	985,2	889,9	985,2	953,4	985,2	953,4	985,2	985,2	953,4	985,2	953,4	985,2	11 600,0

Fabbisogno energetico di illuminazione parassita Qp [kWh]

Locale	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC	Anno
Locale 6	193,8	175,1	193,8	187,6	193,8	187,6	193,8	193,8	187,6	193,8	187,6	193,8	2 282,2
Locale 37	3,1	2,8	3,1	3,0	3,1	3,0	3,1	3,1	3,0	3,1	3,0	3,1	35,9
Locale 38	3,3	3,0	3,3	3,2	3,3	3,2	3,3	3,3	3,2	3,3	3,2	3,3	38,9
Locale 39	3,0	2,7	3,0	2,9	3,0	2,9	3,0	3,0	2,9	3,0	2,9	3,0	35,8
Locale 40	3,2	2,9	3,2	3,1	3,2	3,1	3,2	3,2	3,1	3,2	3,1	3,2	37,3
Locale 41	2,9	2,6	2,9	2,8	2,9	2,8	2,9	2,9	2,8	2,9	2,8	2,9	33,6
Locale 42	3,1	2,8	3,1	3,0	3,1	3,0	3,1	3,1	3,0	3,1	3,0	3,1	36,5
Locale 43	10,5	9,5	10,5	10,1	10,5	10,1	10,5	10,5	10,1	10,5	10,1	10,5	123,2
Locale 44	3,0	2,7	3,0	2,9	3,0	2,9	3,0	3,0	2,9	3,0	2,9	3,0	35,8
Locale 45	10,1	9,1	10,1	9,8	10,1	9,8	10,1	10,1	9,8	10,1	9,8	10,1	118,8
Locale 46	3,7	3,3	3,7	3,6	3,7	3,6	3,7	3,7	3,6	3,7	3,6	3,7	43,4
Locale 47	3,7	3,3	3,7	3,6	3,7	3,6	3,7	3,7	3,6	3,7	3,6	3,7	43,5
Locale 48	3,8	3,5	3,8	3,7	3,8	3,7	3,8	3,8	3,7	3,8	3,7	3,8	45,1
Locale 49	3,8	3,5	3,8	3,7	3,8	3,7	3,8	3,8	3,7	3,8	3,7	3,8	45,1
Locale 50	3,9	3,5	3,9	3,8	3,9	3,8	3,9	3,9	3,8	3,9	3,8	3,9	46,0
Locale 51	3,9	3,5	3,9	3,8	3,9	3,8	3,9	3,9	3,8	3,9	3,8	3,9	45,9
Locale 52	3,9	3,5	3,9	3,8	3,9	3,8	3,9	3,9	3,8	3,9	3,8	3,9	46,0
Locale 53	3,9	3,5	3,9	3,8	3,9	3,8	3,9	3,9	3,8	3,9	3,8	3,9	46,2
Locale 54	4,1	3,7	4,1	3,9	4,1	3,9	4,1	4,1	3,9	4,1	3,9	4,1	47,7
Locale 55	4,0	3,6	4,0	3,9	4,0	3,9	4,0	4,0	3,9	4,0	3,9	4,0	47,4
Locale 56	1,5	1,4	1,5	1,4	1,5	1,4	1,5	1,5	1,4	1,5	1,4	1,5	17,6
Locale 57	1,5	1,4	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	17,7
Locale 58	4,1	3,7	4,1	4,0	4,1	4,0	4,1	4,1	4,0	4,1	4,0	4,1	48,3
Locale 59	4,3	3,9	4,3	4,1	4,3	4,1	4,3	4,3	4,1	4,3	4,1	4,3	50,3
Locale 60	4,3	3,9	4,3	4,1	4,3	4,1	4,3	4,3	4,1	4,3	4,1	4,3	50,3
Locale 61	4,3	3,9	4,3	4,1	4,3	4,1	4,3	4,3	4,1	4,3	4,1	4,3	50,3
Locale 62	4,3	3,9	4,3	4,1	4,3	4,1	4,3	4,3	4,1	4,3	4,1	4,3	50,2
Locale 63	4,3	3,9	4,3	4,1	4,3	4,1	4,3	4,3	4,1	4,3	4,1	4,3	50,3
Locale 64	4,1	3,7	4,1	3,9	4,1	3,9	4,1	4,1	3,9	4,1	3,9	4,1	47,7
Totale	307,2	277,5	307,2	297,3	307,2	297,3	307,2	307,2	297,3	307,2	297,3	307,2	3 617,2

Corpo A - Zona laboratori ski room

Fabbisogno energetico di illuminazione artificiale Qa [kWh]

Locale	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC	Anno
Locale 7	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 8	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 9	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 10	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 11	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 12	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 13	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 14	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 15	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 16	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 17	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 18	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 19	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 20	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 21	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 22	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0

Locale 23	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 24	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 25	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 26	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 27	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 28	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 29	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 30	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 31	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 32	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 33	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 34	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 35	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 36	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 66	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Locale 67	34,0	30,7	34,0	32,9	34,0	32,9	34,0	34,0	32,9	34,0	32,9	34,0	400,0
Totale	1 087,1	981,9	1 087,1	1 052,1	1 087,1	1 052,1	1 087,1	1 087,1	1 052,1	1 087,1	1 052,1	1 087,1	12 800,0

Fabbisogno energetico di illuminazione parassita Qp [kWh]

Locale	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC	Anno
Locale 7	8,1	7,3	8,1	7,9	8,1	7,9	8,1	8,1	7,9	8,1	7,9	8,1	95,7
Locale 8	8,1	7,3	8,1	7,8	8,1	7,8	8,1	8,1	7,8	8,1	7,8	8,1	95,1
Locale 9	8,2	7,4	8,2	7,9	8,2	7,9	8,2	8,2	7,9	8,2	7,9	8,2	96,1
Locale 10	8,3	7,5	8,3	8,0	8,3	8,0	8,3	8,3	8,0	8,3	8,0	8,3	97,6
Locale 11	8,5	7,7	8,5	8,3	8,5	8,3	8,5	8,5	8,3	8,5	8,3	8,5	100,6
Locale 12	8,5	7,7	8,5	8,2	8,5	8,2	8,5	8,5	8,2	8,5	8,2	8,5	100,4
Locale 13	8,7	7,9	8,7	8,4	8,7	8,4	8,7	8,7	8,4	8,7	8,4	8,7	102,6
Locale 14	2,6	2,3	2,6	2,5	2,6	2,5	2,6	2,6	2,5	2,6	2,5	2,6	30,3
Locale 15	1,7	1,6	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7	20,5
Locale 16	8,6	7,7	8,6	8,3	8,6	8,3	8,6	8,6	8,3	8,6	8,3	8,6	100,8
Locale 17	8,4	7,6	8,4	8,2	8,4	8,2	8,4	8,4	8,2	8,4	8,2	8,4	99,2
Locale 18	8,5	7,7	8,5	8,2	8,5	8,2	8,5	8,5	8,2	8,5	8,2	8,5	99,8
Locale 19	8,3	7,5	8,3	8,1	8,3	8,1	8,3	8,3	8,1	8,3	8,1	8,3	98,1
Locale 20	8,0	7,2	8,0	7,7	8,0	7,7	8,0	8,0	7,7	8,0	7,7	8,0	94,1
Locale 21	5,0	4,5	5,0	4,8	5,0	4,8	5,0	5,0	4,8	5,0	4,8	5,0	58,6
Locale 22	8,2	7,4	8,2	7,9	8,2	7,9	8,2	8,2	7,9	8,2	7,9	8,2	96,1
Locale 23	8,1	7,3	8,1	7,8	8,1	7,8	8,1	8,1	7,8	8,1	7,8	8,1	95,1
Locale 24	8,0	7,3	8,0	7,8	8,0	7,8	8,0	8,0	7,8	8,0	7,8	8,0	94,7
Locale 25	8,1	7,3	8,1	7,8	8,1	7,8	8,1	8,1	7,8	8,1	7,8	8,1	95,1
Locale 26	8,1	7,3	8,1	7,8	8,1	7,8	8,1	8,1	7,8	8,1	7,8	8,1	94,9
Locale 27	2,4	2,2	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	2,4	28,8
Locale 28	2,5	2,2	2,5	2,4	2,5	2,4	2,5	2,5	2,4	2,5	2,4	2,5	29,0
Locale 29	1,8	1,6	1,8	1,7	1,8	1,7	1,8	1,8	1,7	1,8	1,7	1,8	21,1
Locale 30	1,1	1,0	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	12,9
Locale 31	1,2	1,1	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	14,4
Locale 32	8,2	7,4	8,2	7,9	8,2	7,9	8,2	8,2	7,9	8,2	7,9	8,2	96,2
Locale 33	6,5	5,9	6,5	6,3	6,5	6,3	6,5	6,5	6,3	6,5	6,3	6,5	76,3
Locale 34	10,4	9,4	10,4	10,1	10,4	10,1	10,4	10,4	10,1	10,4	10,1	10,4	122,5
Locale 35	11,6	10,4	11,6	11,2	11,6	11,2	11,6	11,6	11,2	11,6	11,2	11,6	136,2
Locale 36	16,1	14,5	16,1	15,6	16,1	15,6	16,1	16,1	15,6	16,1	15,6	16,1	189,6
Locale 66	18,2	16,5	18,2	17,7	18,2	17,7	18,2	18,2	17,7	18,2	17,7	18,2	214,9
Locale 67	56,1	50,6	56,1	54,3	56,1	54,3	56,1	56,1	54,3	56,1	54,3	56,1	660,2
Totale	286,0	258,3	286,0	276,8	286,0	276,8	286,0	286,0	276,8	286,0	276,8	286,0	3 367,2

Totale

Totale Qa	2 072,3	1 871,8	2 072,3	2 005,5	2 072,3	2 005,5	2 072,3	2 072,3	2 005,5	2 072,3	2 005,5	2 072,3	24 400,0
Totale Qp	593,2	535,8	593,2	574,1	593,2	574,1	593,2	593,2	574,1	593,2	574,1	593,2	6 984,4
Totale	2 665,5	2 407,6	2 665,5	2 579,5	2 665,5	2 579,5	2 665,5	2 665,5	2 579,5	2 665,5	2 579,5	2 665,5	31 384,4

Riepilogo fonti rinnovabili (energia primaria)

	Riscaldamento	Acqua calda	Raffrescamento	Ventilazione	Illuminazione	Trasporto
Fonti rinnovabili termiche [kWh]	3 016	570	0	8 200	14 751	234
Fonti rinnovabili elettriche [kWh]	0	0	0	0	0	0
Totale [kWh]	3 016	570	0	8 200	14 751	234

Legenda

 $Q_{H,nd}$: fabbisogno energetico utile per il riscaldamento $Q'_{H,nd}$: fabbisogno energetico utile per il riscaldamento al netto dei recuperi $Q_{C,nd}$: fabbisogno energetico utile per il raffrescamento η_e : rendimento di emissione

 $\eta_{\rm c}$: rendimento di regolazione $\eta_{\rm d}$: rendimento di distribuzione η_{gn} : rendimento di generazione η_{gn} : rendimento di generazione η_{g} : rendimento globale Q_p : fabbisogno di energia primaria

Dettaglio impianti

Centrale termica

Hoval Ultragas 350 nr. 1

Energia [kWh]	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	Totale
Energia termica fornita riscaldamento	182 504	129 550	104 850	56 865	0	0	0	0	0	60 148	131 256	172 363	837 537
Energia termica fornita acqua calda	8 181	7 380	8 172	7 962	9 392	8 986	9 256	9 262	9 055	8 225	7 906	8 177	101 954
Energia termica fornita	190 685	136 931	113 022	64 827	9 392	8 986	9 256	9 262	9 055	68 373	139 162	180 540	939 491
Fabbisogno energia riscaldamento	171 569	121 595	98 150	52 841	0	0	0	0	0	55 912	123 144	161 979	785 190
Fabbisogno energia acqua calda	7 690	6 927	7 649	7 399	8 871	8 483	8 738	8 744	8 551	7 646	7 417	7 684	95 800
Fabbisogno energia	179 259	128 522	105 800	60 240	8 871	8 483	8 738	8 744	8 551	63 558	130 561	169 664	880 990
Fabbisogno energia elettrica ausiliari riscaldamento	185	131	105	56	0	0	0	0	0	60	132	174	843
Fabbisogno energia elettrica ausiliari acqua calda	8	7	8	8	16	15	16	16	15	8	8	8	134
Fabbisogno energia elettrica ausiliari	193	138	113	64	16	15	16	16	15	68	140	183	977
Fabbisogno energia elettrica circuito riscaldamento	449	319	258	140	0	0	0	0	0	148	323	424	2 062
Fabbisogno energia elettrica circuito acqua calda	73	66	73	71	83	80	82	82	80	73	70	73	906
Fabbisogno energia elettrica circuito	522	384	331	211	83	80	82	82	80	221	393	497	2 968
Energia primaria [kWh]	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	Totale
Fabbisogno energia primaria riscaldamento	180 147	127 674	103 058	55 483	Mag 0	0	0	0	0	58 708	129 301	170 078	824 450
Fabbisogno energia primaria acqua calda	8 075	7 274	8 032	7 768	9 314	8 908	9 175	9 181	8 979	8 028	7 788	8 069	100 590
Fabbisogno energia primaria	188 222	134 948	111 090	63 252	9 314	8 908	9 175	9 181	8 979	66 736	137 089	178 147	925 040
Fabbisogno energia primaria ausiliari riscaldamento	360	255	205	110	0	0	0	0	0	116	258	340	1 645
Fabbisogno energia primaria ausiliari acqua calda	16	15	16	15	31	30	31	31	30	16	16	16	261
Fabbisogno energia primaria ausiliari	377	270	221	125	31	30	31	31	30	132	274	356	1 905
Fabbisogno energia primaria circuito riscaldamento	876	622	503	273	0	0	0	0	0	289	630	827	4 020
Fabbisogno energia primaria circuito acqua calda	142	128	142	138	163	156	160	161	157	143	137	142	1 767
Fabbisogno energia primaria circuito	1 018	750	645	411	163	156	160	161	157	431	767	969	5 787

Energia [kWh]	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	Totale
Energia termica fornita riscaldamento	0	0	0	0	0	0	0	0	0	0	0	0	0
Energia termica fornita acqua calda	0	0	0	0	0	0	0	0	0	0	0	0	0
Energia termica fornita	0	0	0	0	0	0	0	0	0	0	0	0	0
Fabbisogno energia riscaldamento	55	40	35	28	0	0	0	0	0	29	41	52	280
Fabbisogno energia acqua calda	2	2	3	4	0	0	0	0	0	4	2	2	20
Fabbisogno energia	58	43	37	32	0	0	0	0	0	33	43	55	301
Fabbisogno energia elettrica ausiliari riscaldamento	9	8	8	8	0	0	0	0	0	8	8	9	57
Fabbisogno energia elettrica ausiliari acqua calda	0	0	1	1	9	9	9	9	9	1	0	0	49
Fabbisogno energia elettrica ausiliari	9	8	9	9	9	9	9	9	9	9	9	9	105
Fabbisogno energia elettrica circuito riscaldamento	0	0	0	0	0	0	0	0	0	0	0	0	0
Fabbisogno energia elettrica circuito acqua calda	0	0	0	0	0	0	0	0	0	0	0	0	0
Fabbisogno energia elettrica circuito	0	0	0	0	0	0	0	0	0	0	0	0	0

Energia primaria [kWh]	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	Totale
Fabbisogno energia primaria riscaldamento	58	42	36	29	0	0	0	0	0	31	43	55	294
Fabbisogno energia primaria acqua calda	3	2	3	4	0	0	0	0	0	4	3	3	21
Fabbisogno energia primaria	61	45	39	33	0	0	0	0	0	35	45	57	316
Fabbisogno energia primaria ausiliari riscaldamento	17	15	16	15	0	0	0	0	0	15	16	17	110
Fabbisogno energia primaria ausiliari acqua calda	1	1	1	2	17	17	17	17	17	2	1	1	95
Fabbisogno energia primaria ausiliari	17	16	17	17	17	17	17	17	17	17	17	17	205
Fabbisogno energia primaria circuito riscaldamento	0	0	0	0	0	0	0	0	0	0	0	0	0
Fabbisogno energia primaria circuito acqua calda	0	0	0	0	0	0	0	0	0	0	0	0	0
Fabbisogno energia primaria circuito	0	0	0	0	0	0	0	0	0	0	0	0	0

Ascensore

Impianto [kWh]	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	Totale
Ascensore 6 persone	42	38	42	41	42	41	42	42	41	42	41	42	498

Energia primaria e quote rinnovabili

Corpo A

Ep rinnovabile [kWh]

Servizio	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	Totale
Н	505	440	469	314	0	0	0	0	0	321	467	500	3 016
С	0	0	0	0	0	0	0	0	0	0	0	0	0
W	48	43	48	46	49	48	49	49	48	48	46	48	570
V	1 304	1 177	1 304	925	0	0	0	0	0	925	1 261	1 304	8 200
L	1 253	1 132	1 253	1 212	1 253	1 212	1 253	1 253	1 212	1 253	1 212	1 253	14 751
T	20	18	20	19	20	19	20	20	19	20	19	20	234
	3 129	2 809	3 092	2 517	1 322	1 279	1 322	1 322	1 279	2 566	3 007	3 124	26 770

Ep non rinnovabile [kWh]

Servizio	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	Totale
Н	53 611	38 334	31 416	17 172	0	0	0	0	0	18 122	38 915	50 712	248 282
С	0	0	0	0	0	0	0	0	0	0	0	0	0
W	1 393	1 256	1 387	1 342	1 584	1 517	1 563	1 564	1 528	1 387	1 345	1 393	17 260
V	5 408	4 885	5 408	3 838	0	0	0	0	0	3 838	5 234	5 408	34 019
L	5 198	4 695	5 198	5 030	5 198	5 030	5 198	5 198	5 030	5 198	5 030	5 198	61 200
Т	82	74	82	80	82	80	82	82	80	82	80	82	971
	65 693	49 244	43 491	27 462	6 865	6 627	6 843	6 844	6 638	28 628	50 603	62 793	361 731

Ep totale [kWh]

_p													
Servizio	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	Totale
Н	54 116	38 774	31 884	17 486	0	0	0	0	0	18 443	39 383	51 212	251 297
С	0	0	0	0	0	0	0	0	0	0	0	0	0
W	1 441	1 299	1 435	1 388	1 634	1 565	1 613	1 614	1 576	1 435	1 391	1 440	17 830
V	6 712	6 062	6 712	4 763	0	0	0	0	0	4 763	6 495	6 712	42 219
L	6 451	5 826	6 451	6 242	6 451	6 242	6 451	6 451	6 242	6 451	6 242	6 451	75 950
Τ	102	92	102	99	102	99	102	102	99	102	99	102	1 205
	68 821	52 054	46 584	29 979	8 187	7 907	8 166	8 167	7 917	31 194	53 610	65 917	388 501

Quota rinnovabile

Servizio	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	Totale
Н	1 %	1 %	1 %	2 %						2 %	1 %	1 %	1 %
С													
W	3 %	3 %	3 %	3 %	3 %	3 %	3 %	3 %	3 %	3 %	3 %	3 %	3 %
V	19 %	19 %	19 %	19 %						19 %	19 %	19 %	19 %
L	19 %	19 %	19 %	19 %	19 %	19 %	19 %	19 %	19 %	19 %	19 %	19 %	19 %
T	19 %	19 %	19 %	19 %	19 %	19 %	19 %	19 %	19 %	19 %	19 %	19 %	19 %
	5 %	5 %	7 %	8 %	16 %	16 %	16 %	16 %	16 %	8 %	6 %	5 %	7 %

Indici di prestazione energetica

Corpo A

EP rinnovabile [kWh/m²]

Servizio	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	Totale
Н	0,43	0,38	0,40	0,27	0,00	0,00	0,00	0,00	0,00	0,28	0,40	0,43	2,59
С	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
W	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,49
V	1,12	1,01	1,12	0,79	0,00	0,00	0,00	0,00	0,00	0,79	1,08	1,12	7,04
L	1,08	0,97	1,08	1,04	1,08	1,04	1,08	1,08	1,04	1,08	1,04	1,08	12,67
T	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,20
	2,69	2,41	2,66	2,16	1,14	1,10	1,14	1,14	1,10	2,20	2,58	2,68	23,00

EP non rinnovabile [kWh/m²]

Servizio	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	Totale
Н	46,05	32,93	26,99	14,75	0,00	0,00	0,00	0,00	0,00	15,57	33,43	43,56	213,29
С	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
W	1,20	1,08	1,19	1,15	1,36	1,30	1,34	1,34	1,31	1,19	1,16	1,20	14,83
V	4,65	4,20	4,65	3,30	0,00	0,00	0,00	0,00	0,00	3,30	4,50	4,65	29,22
L	4,47	4,03	4,47	4,32	4,47	4,32	4,47	4,47	4,32	4,47	4,32	4,47	52,57
T	0,07	0,06	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,83
	56,43	42,30	37,36	23,59	5,90	5,69	5,88	5,88	5,70	24,59	43,47	53,94	310,75

EP totale [kWh/m²]

Li totale [KWII/II	•]												
Servizio	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic	Totale
Н	46,49	33,31	27,39	15,02	0,00	0,00	0,00	0,00	0,00	15,84	33,83	43,99	215,88
С	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
W	1,24	1,12	1,23	1,19	1,40	1,34	1,39	1,39	1,35	1,23	1,19	1,24	15,32
V	5,77	5,21	5,77	4,09	0,00	0,00	0,00	0,00	0,00	4,09	5,58	5,77	36,27
L	5,54	5,01	5,54	5,36	5,54	5,36	5,54	5,54	5,36	5,54	5,36	5,54	65,25
T	0,09	0,08	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	1,04
	59,12	44,72	40,02	25,75	7,03	6,79	7,01	7,02	6,80	26,80	46,05	56,63	333,74